

ARIKA RESOURCES

Yundamindra Gold Project, WA – Exploration Update

# MULTIPLE HIGH-GRADE GOLD INTERCEPTS IN MAIDEN DIAMOND DRILLING AT PENNYWEIGHT POINT

Opens up depth and plunge potential, confirming significant primary gold mineralisation including 13.46m @ 5.28 g/t Au 150m down-plunge of previous intercept of 14m @ 15.48g/t Au

#### **KEY HIGHLIGHTS**

- Diamond drill-holes 25YMD001 and 25YMD002, the first diamond cored drill-holes to be completed by Arika at the Pennyweight Point Prospect and the deepest holes drilled to date by ARI in the area have both intersected thick zones of high-grade gold mineralisation up to 50m down-dip/plunge of the nearest previously reported drill-holes.
- New assays from holes 25YMD001 and 25YMD002 include:
  - o 35.76m @ 2.14 g/t Au from 104.27m down-hole (25YMD001), including:
    - 13.46m @ 5.28 g/t Au from 111.40m; and
    - 1.50m @ 9.01 g/t Au from 112.55m; and
    - 6.13m @ 8.00 g/t Au from 117.47m.
  - o 23.97m @ 2.54 g/t Au from 162.03m down-hole (25YMD002), including:
    - 5.38m @ 10.62 g/t Au from 170.52m; and
    - 4.34m @ 13.05 g/t Au from 171.56m.
- The intersections were achieved ~100m and 150m, respectively, down-dip/down-plunge to the south of previously reported hole YMRC077, which returned a spectacular result of:
  - 14m @ 15.48 g/t Au from 46m down-hole<sup>1</sup>
- The results confirm the significant untested depth/plunge potential of the Pennyweight Point structure, which has a current drill defined **strike length of over 350m** and extends to **a depth of at least 200m** down-dip from surface.
- The system remains open along strike to the south, down-dip/down-plunge at depth and to the north beyond the disruptive effects of a localized cross-cutting fault.
- Arika's recent assessment of surface geochemistry has identified numerous peak gold-in-soil anomalies coincident with interpreted extensions to the Pennyweight Point ore hosting structures well away from the historical workings and previous drilling – all of which are considered priority targets and previously untested.
- Drilling planned to re-commence shortly to follow up latest results and begin testing new targets.

<sup>1</sup>Refer to ARI ASX Announcement dated 20 October 2024

Arika Resources Limited (ASX: ARI) ("Arika" or "Company") is pleased to report assay results from the recently completed diamond drilling campaign at the Pennyweight Point Prospect, part of the **Yundamindra Gold JV Project**, located 65km south-west of Laverton in the world-class Eastern Goldfields mining district of Western Australia.

The most recent drilling program completed at Pennyweight Point comprised two diamond cored drillholes (25YMD001 and 25YMD002) for a combined total of 376.40m (96.3m of mud rotary pre-collaring and 280.10m of HQ diamond coring).

This diamond drill program has now confirmed the presence of gold mineralisation at Pennyweight Point continuously over a strike length of at least 350m and to at least 150m down-dip. The system remains open both along strike and at depth/down-plunge.

The Pennyweight Point Prospect is located towards the northern part of the 'Eastern Corridor'– a strongly mineralised structural corridor which extends for ~10 kilometres along the eastern limb of the Yundamindra Synform.

The Eastern Corridor is defined by a series of major NE-SW trending structures, with numerous E-W linking faults. Both the NE-SW and E-W fault orientations carry significant gold mineralisation. Previous work has only focused on shallow oxide ore around the historical workings with limited to no drilling having ever been undertaken to test for depth or strike extensions.

Historical drilling to date, and the most recent drilling by Arika, has been restricted to an area of historical prospector scale workings over a strike length of just 350m within the central part of the ore hosting structural corridor.

This drilling program was designed to test for depth and plunge extensions to a series of spectacular intersections achieved previously at the Pennyweight Point prospect, and to:

- Confirm host rock lithologies;
- Identify key structural controls;
- Provide insights into geotechnical aspects for future mining studies; and
- Identify potential multi-element alteration signatures associated with the mineralised zone to assist with ongoing exploration of the broader project area.

## Arika's Managing Director, Justin Barton, said:

"The assay results from our first two diamond-cored drill-holes at Pennyweight Point have added further significant momentum to our ongoing systematic exploration campaign at Yundamindra. In addition to the exceptional grade and tenor of the mineralisation, this drilling has now extended the mineralisation some 50m down-plunge, confirming that we have a significant mineral system on our hands.

"These results have also provided our technical team with important knowledge to assist in targeting the mineralisation in future extensional drilling and refining targeting of new discoveries.

"The scale of the Pennyweight Point and Landed at Last prospects are both emerging rapidly, with continuous mineralisation now defined over a significant area – all located on granted Mining Leases. With these prospects remaining open both along strike and at depth, the multitude of high-priority targets identified over the Project, and with less than 1% of currently identified structures drill tested, the Yundamindra Project is emerging as a high-quality discovery and growth opportunity for Arika.

"We look forward to following up these encouraging results and re-commencing drilling shortly."



## **Drilling Results Summary – Pennyweight Point**

Two diamond holes were drilled at Pennyweight Point for a combined total drill advance of 376.40m. (25YMD001 and 25YMD002). The drilling for both holes commenced with mud-rotary pre-collars followed by HQ core to hole termination depths. The holes were drilled on two sections spaced 40m apart to test for depth and plunge extensions to a series of spectacular shallower intersections achieved in historical drilling and most recently by Arika.



**Figure 1:** Schematic Cross-Section Line 1160mN (Pennyweight Point local grid) with recent assay results and historical drilling. Note: Strengthening of the lode down-dip from the historical drilling Photos of the core from the mineralised zones in hole 25YMD001 are presented in Plate 1 below.

The southernmost hole, 25YMD001 (Figure 1) intersected a sequence of pillow basalts to 62.9m followed by mixed sequence of interflow sediments with weak disseminated very fine-grained pyrite +/- rare chalcopyite and basalt to 103.3m. Quartz stringers and veins were essentially absent. Several late



unaltered feldspar-phyric dykes with very fine groundmass intrude these units at down-hole depths of 65.9-67.4m & 96.9-99.0m. Localised narrow fault zones were observed at 68m, 71m and 94.7m.

Anomalous weak gold mineralisation was observed particularly between 70.1-77m although some mineralisation may continue further up-hole towards base of the pre-collared section of the hole. This zone has yet to be cut and sampled.



**Figure 2:** Schematic Cross-Section Line 1200mN (Pennyweight Point local grid) with recent assay results and historical drilling. Note: Strengthening of the lode down-dip from the historical drilling Photos of the core from the mineralised zones in hole 25YMD002 are presented in Plate 2 below.



From 104.3m, tentatively logged foliated tonalite (awaiting petrological confirmation) with assimilated chloritised basalt and in places with a hyaloclastitic-like appearance contains very fine-grained pyrite+/- chalcopyrite and rarer pyrrhotite as disseminations, blebs and very fine stringers in all rock types. Ferromagnesian minerals tend to be biotite altered either as patches of selective replacements but generally in sympathy with foliation. Again, quartz stringer veins are rare. Towards the apparent footwall of this host mixed tonalite-basalt gold mineralised unit, carbonate alteration is observed in the groundmass of both. This is followed by intense chlorite alteration of basalt with calcite-quartz-chlorite stringers.

Below this is dominantly less chloritised basalt with more common very disseminated pyrrhotite over rarer pyrite in groundmass plus narrow patches of silica or carbonate alteration. Trace sporadic quartz-carbonate stringers. This unit is also intruded by foliated narrow lamprophyre dykes between 152.9-153.8m and 161.7-162.1m and also by late unaltered sparse feldspar phyric dykes with very fine groundmass between 149.9-152.1m (the latter, identical to those above the ore zone).

Diamond drillhole 25YMD002 (Figure 2) drilled 40m along strike to the north of 25YMD001 intersected a similar lithological sequence although the mixed tonalite-basalt package appeared a little wider. Strong gold mineralisation occurs over the interval between 170.52-175.9m down-hole depths approaching the apparent footwall contact of the target zone and accompanied by patchy weak silicification.

Again, the footwall is marked by intense chlorite alteration of the basalt host. Beyond this the basalt was less chlorite altered but had more common pyrrhotite as infilling disseminations within cracks with chlorite and calcite. Like 25YMD001 two thin lamprophyre dykes were intersected.

Key learnings:

- The assay results confirm the gold mineralisation is associated with the iron (pyrite) and copper sulphide phases as mm to cm blebs, millimetre-width stringers and sub-millimetre sized disseminations within a foliated mixed / assimilated chlorite/biotite +/- silica altered 'tonalite' and basalt host. This host also showing some brittle-host characteristics.
- Quartz veining (millimetre-sized stringers at best) is very rare in the mineralised zone.
- Common goldfields pathfinder elements such as As, Pb, Sb and Te do not appear to be anomalous although a detailed assessment of the data is being undertaken by the Company's Consulting Geochemist, Sugden Geoscience. The main pathfinder is copper.
- The footwall basalt tends to have higher abundances pyrrhotite with pyrite being rare; this may account for negligible gold anomalism here. More drilling is required across strike to define this sulphide zone; the sulphides may provide a halo around the mineralised structure and thus electrical geophysical techniques such as Induced Polarisation may assist with targeting along strike or at other prospects nearby.

Figures 1 to 4 present schematic Cross-Sections (X-S's), a Vertical Longitudinal Projection and a Drill-hole Collar Plan and respectively. Plates 1 and 2 present core tray photos of the mineralised intervals from diamond drillholes 25YMD001 and 25YMD002 showing the distribution of gold grades over respective sample intervals.

A summary of drill-hole collar locations and results for all holes are presented in Appendix 1, Table 1. The pre-collar material for both diamond holes in this program was not collected due to nearby existing drilling.

Note: All intersections represent down-hole lengths. The holes were designed to test the targeted primary structures orthogonal to strike and based on current interpretation intersection lengths as reported approximate true widths for most of the holes noting local variations in dip and strike. (Refer X-S Figure 1 and 2).





**ARIKA RESOURCES** 



Figure 3: Schematic Vertical Longitudinal Projection (Pennyweight Point local grid) with recent assay results and historical drilling.







**ARIKA RESOURCES** 



**Figure 4**: Pennyweight Point drillhole collar location plan including diamond drillholes **25YMD001 and 25YMD002** ARI's recent RC drilling and historical drilling over total magnetic intensity (TMI). Note the limited drilling north and south along strike from the central area.

Phone: 08 6500 0202 enquiries@arika.com.au



Plate 1: Diamond Drill-hole 25YMD001

35.76m @ 2.14 g/t Au from 104.27m, including:

- o 13.46m @ 5.28 g/t Au from 111.40m, and:
- o **1.50m @ 9.01g/t Au from 112.55m**
- o 6.13m @ 8.00g/t Au from 1117.47m

Host rock is a strongly altered basalt and quartz-feldspar porphyritic tonalite. Numbers in yellow superimposed on the core are the reported gold assay grades over each respective sample interval.





Plate 2: Diamond Drill-hole 25YMD002

23.97m @ 2.54 g/t Au from 162.03m, including:

- o 5.38m @ 10.62 g/t Au from 170.52m,and
- o 4.34m @ 13.05 g/t Au from 171.56m



Figure 5 (below) presents a prospect location plan over gold-in-soil geochemistry showing Pennyweight Point in relation to the Washington, Pride of Pindinnie and Queen of Sheba, Bound to Rise and Highland Chief Prospects located to the north and south respectively. The ore hosting structures between these known occurrences remain largely unexplored.



**Figure 5: Pennyweight Point** and nearby prospects with historical and recent drilling over recently compiled surface geochemistry. Note the restricted extent of drill testing at Pennyweight Point shown by the dark blue square, the lack of drilling beyond the known historical workings and numerous untested large scale peak gold-in-soil geochemical targets to the immediate east and west of Pennyweight Point.



#### **Next Steps**

#### Yundamindra

- Petrological studies of selected core samples and a detailed assessment of lithogeochemical results are underway to assist ongoing exploration at Pennyweight Point and the broader project area.
- Results from ARI's recent review of the historical geochemistry at Yundamindra is being incorporated with our existing geophysical/structural targets.
- An ultra-detailed drone supported aeromagnetic survey is scheduled to commence in the coming weeks over the southern half of the Yundamindra Project area.
- The results from this work will be used to further refine target selection prior to re-commencing drilling.
- > RC drilling is planned to re-commence at Yundamindra in the coming weeks.

## Kookynie

- A detailed review of the Kookynie Project is underway with a pipeline of multiple new, high-priority gold targets emerging.
- Surface geochemical soil surveys are planned to commence at a number of key prospects in the coming weeks.
- > The results from this work will be used to prioritise targets for planned drill testing during Q2/3 2025.

## Yundamindra Gold Project

The Yundamindra Gold JV Project is located 65km south-west of Laverton, 250km north of Kalgoorlie, Western Australia (Figure5). The Project is a Joint Venture between Arika Resources Ltd (ASX: ARI) and Nex Metals (ASX: NME), where Arika holds 80% and NME holds 20% with Arika acting as Project manager.

Regionally, it is situated toward the westernmost margin of the Laverton Greenstone Belt (LGB) in the Yilgarn Craton of Western Australia.

The Laverton Greenstone Belt is one of the best endowed gold regions in Australia. It hosts two world-class producing mines, namely Sunrise Dam at 8 million oz contained Gold and Wallaby at 7 million oz contained gold (Standing 2008; Austin, 2022)<sup>1</sup>, which are located just ~20-30km east of Arika's Yundamindra Gold Project. Total gold production from the belt is estimated to be in excess of 28 million ounces.

The Laverton Greenstone Belt is one of a number of greenstone belts that collectively define the Kurnalpi tectonostratigraphic terrane of the Northeastern Goldfields 'Superterrane'.

The Kurnalpi Terrane is bounded by the regionally recognisable Hootanui Shear Zone to the east and the Ockerburry Shear Zone to the west – long-lived, deep crustal/mantle penetrating structures which, along with their related second order faults, are considered responsible for the development of many of the region's most significant gold deposits.

At the local scale, the Yundamindra Project covers both the south-western and south-eastern flanks and the southern nose of a regional scale synformal fold comprising a central hornblende-granodiorite

<sup>&</sup>lt;sup>1</sup> Standing, Jonathon G, Terrane Amalgamation in the Eastern Goldfields Superterrane, Yilgarn Craton: Evidence from tectonostratigraphic studies of the Laverton Greenstone Belt. Precambrian Research, V161, Issues 1-2, 15 February 2008, pages 114-134.. Austin, Joseph Martin, Testing the 'terrane-boundary' concept and geodynamics in the NeoArchean: A cse study of the stratigraphy from the West and East Laverton Greenstone Belts. Queensland University of Technology 2022.



batholith which intruded mafic-felsic and lesser sedimentary lithologies (Figure 1 and 2).

This style of structural setting is commonly associated with the development of many of the region's most significant gold deposits. Although the area has had a long history of prospect-scale mining, it has not been subjected to systematic modern exploration and remains under-explored, particularly at depth.

This presents ARI with a unique opportunity to discover significant mineralisation in close proximity to a number of processing facilities (Figure 6).



Figure 6: Regional Location Plan showing proximity of Yundamindra to Major Deposits, Mines and Processing Facilities.



The Yundamindra Project is contiguous with the recently announced \$44 million Guyer JV between Iceni Gold (ASX: ICL) and Gold Road (ASX: GOR) (refer to Figure 7).



**Figure 7**: Yundamindra Gold Project showing prospect locations and competitor tenure, including the recently announced \$44M Gold Road 'Guyer' JV between Iceni Gold (ASX: ICL) and Gold Road (ASX: GOR).



This announcement is approved by the Board of Arika Resources Limited.

#### **ENQUIRIES**

#### Investors

Justin Barton Managing Director +61 8 6500 0202 enquiries@arika.com.au

#### Media

Nicholas Read Read Corporate +61 8 9388 1474 info@readcorporate.com.au

#### **Competent Person Statement**

The information that relates to Exploration Results is based upon information compiled by Mr Steve Vallance, who is a consultant to Arika Resources Ltd. Mr Vallance is a Member of The Australian Institute of Geoscientists (AIG). Mr Vallance has sufficient experience which is relevant to the style of mineralisation and type of deposits under consideration and to the activity which he is undertaking to qualify as a Competent Person as defined in the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves" (the JORC Code 2012). Mr Vallance consents to the inclusion in the report of the matters based on his information in the form and context in which it appears.

#### **Forward-Looking Statements**

This announcement may contain certain "forward-looking statements" which may not have been based solely on historical facts but rather may be based on the Company's current expectations about future events and results. Where the Company expresses or implies an expectation or belief as to future events or results, such expectation or belief is expressed in good faith and believed to have reasonable basis. However, forward-looking statements:

(a) are necessarily based upon a number of estimates and assumptions that, while considered reasonable by the Company, are inherently subject to significant technical, business, economic, competitive, political and social uncertainties and contingencies.

(b) involve known and unknown risks and uncertainties that could cause actual events or results to differ materially from estimated or anticipated events or results reflected in such forward-looking statements. Such risks include, without limitation, resource risk, metals price volatility, currency fluctuations, increased production costs and variances in ore grade or recovery rates from those assumed in mining plans, as well as political and operational risks in the countries and states in which the Company operates or supplies or sells product to, and governmental regulation and judicial outcomes; and

(c) may include, among other things, statements regarding estimates and assumptions in respect of prices, costs, results and capital expenditure, and are or may be based on assumptions and estimates related to future technical, economic, market, political, social and other conditions.

The words "believe", "expect", "anticipate", "indicate", "contemplate", "target", "plan", "intends", "continue", "budget", "estimate", "may", "will", "schedule" and similar expressions identify forward-looking statements.

All forward-looking statements contained in this presentation are qualified by the foregoing cautionary statements. Recipients are cautioned that forward-looking statements are not guarantees of future performance and accordingly recipients are cautioned not to put undue reliance on forward-looking statements due to the inherent uncertainty therein.

The Company disclaims any intent or obligation to publicly update any forward-looking statements, whether as a result of new information, future events or results or otherwise.

#### **No New Information**

To the extent that this announcement contains references to prior exploration results which have been cross referenced to previous market announcements made by the Company, unless explicitly stated, no new information is contained. The Company confirms that it is not aware of any new information or data that materially affects the information included in the relevant market announcements and, in the case of estimates of Mineral Resources, that all material assumptions and technical parameters underpinning the estimates in the relevant market announcements continue to apply and have not materially changed.



#### **About Arika Resources Limited**

We are focused on delivering value to shareholders through the discovery and development of high-quality gold assets, including the Kookynie and Yundamindra Gold Projects, in Western Australia.

Arika Resources Limited is continuing to build on the potential large-scale gold footprints at the Yundamindra and Kookynie Gold Projects by expanding on known mineralisation and targeting new discoveries through a pipeline of high priority brownfield and greenfield targets.



**Contributing Parties:** 

- Core Geophysics, Geophysical Consultants
- Sugden Geoscience, Geochemical Consultants
- Newexco Geological and Geophysical Consultants
- DigiMaps GIS Consultants



## Appendix One – Significant Intercepts and Collars

Significant intercepts in the table below were calculated on a length weighted average basis. The diamond cored section of each hole was sampled in it's entirety from the start of each cored section to the end of hole depth with sampling guided by geological observations and with maximum sample lengths generally not exceeding 1m.

For the low grade envelope this was based on a 1m sample returning an assay value of greater than 0.1 g/t Au and for the high grade zone(s), based on internal intervals reporting assays greater than 0.5 g/t Au, 5.0g/t Au and 10.0 g/t Au respectively. The maximum width of internal waste was generally 4m however the mineralised intervals are based on geological observations and current interpretation. Consequently, in some instances a broader interval of internal waste, interpreted as a 'horse' of limited dip and strike extent may be carried in order to honour the true nature of the ore hosting structure as defined by adjacent drillholes at that particular location.

No top cut-off was applied due to the early nature of the assessment.

#### TABLE 1: YUNDAMINDRA EXPLORATION DRILLING RESULTS - PENNYWEIGHT POINT

| Collar Location and Orientation |      |        |         |     |     |         | Intersection >0.1 g/t Au |      |     |        |        |        |        |
|---------------------------------|------|--------|---------|-----|-----|---------|--------------------------|------|-----|--------|--------|--------|--------|
| Hole_ID                         | Туре | MGA_E  | MGA_N   | RL  | Dip | Azimuth | Depth                    | From | То  | Length |        | Grade  |        |
|                                 |      |        |         |     |     |         | (m)                      | (m)  | (m) | (m)    | Au g/t | Ag g/t | Cu ppm |
| YMRC_055                        | RC   | 411704 | 6779553 | 448 | -60 | 300     | 78                       | 0    | 1   | 1      | 0.18   |        |        |
|                                 |      |        |         |     |     |         |                          | 6    | 7   | 1      | 0.10   |        |        |
|                                 |      |        |         |     |     |         |                          | 9    | 10  | 1      | 0.11   |        |        |
|                                 |      |        |         |     |     |         |                          | 17   | 20  | 3      | 0.23   |        |        |
|                                 |      |        |         |     |     |         |                          | 23   | 44  | 21     | 0.29   |        |        |
|                                 |      |        |         |     |     |         |                          | 46   | 47  | 1      | 0.13   |        |        |
|                                 |      |        |         |     |     |         |                          | 50   | 51  | 1      | 0.11   |        |        |
|                                 |      |        |         |     |     |         |                          | 53   | 55  | 2      | 0.37   |        |        |
|                                 |      |        |         |     |     |         |                          | 64   | 70  | 6      | 0.16   |        |        |
|                                 |      |        |         |     |     |         |                          | 75   | 76  | 1      | 0.11   |        |        |
| YMRC_056                        | RC   | 411696 | 6779582 | 445 | -60 | 300     | 60                       | 0    | 1   | 1      | 0.23   |        |        |
|                                 |      |        |         |     |     |         |                          | 27   | 38  | 11     | 0.54   |        |        |
|                                 |      |        |         |     |     |         | incl                     | 31   | 34  | 3      | 1.40   |        |        |
|                                 |      |        |         |     |     |         |                          | 41   | 42  | 1      | 0.12   |        |        |
| YMRC 057                        | RC   | 411711 | 6779566 | 445 | -60 | 300     | 66                       | 0    | 1   | 1      | 0.39   |        |        |
|                                 |      |        |         |     |     |         |                          | 7    | 61  | 54     | 0.38   |        |        |
|                                 |      |        |         |     |     |         | incl                     | 19   | 24  | 5      | 1.06   |        |        |
| YMRC_058                        | RC   | 411713 | 6779590 | 447 | -60 | 300     | 72                       | 0    | 2   | 2      | 0.20   |        |        |
|                                 |      |        |         |     |     |         |                          | 12   | 13  | 1      | 0.21   |        |        |
|                                 |      |        |         |     |     |         |                          | 17   | 18  | 1      | 0.13   |        |        |
|                                 |      |        |         |     |     |         |                          | 21   | 53  | 32     | 0.70   |        |        |
|                                 |      |        |         |     |     |         | incl                     | 36   | 42  | 6      | 2.42   |        |        |
|                                 |      |        |         |     |     |         |                          | 58   | 61  | 3      | 0.20   |        |        |
| YMRC 059                        | RC   | 411737 | 6779583 | 445 | -60 | 300     | 84                       | 0    | 30  | 30     | 0.93   |        |        |
|                                 |      |        |         |     |     |         | incl                     | 0    | 12  | 12     | 1.96   |        |        |
|                                 |      |        |         |     |     |         | and                      | 3    | 4   | 1      | 9.00   |        |        |
|                                 |      |        |         |     |     |         |                          | 33   | 36  | 3      | 0.17   |        |        |
|                                 |      |        |         |     |     |         |                          | 50   | 79  | 29     | 2.29   |        |        |
|                                 |      |        |         |     |     |         | incl                     | 53   | 76  | 23     | 2.85   |        |        |
|                                 |      |        |         |     |     |         | and                      | 53   | 56  | 3      | 7.03   |        |        |
|                                 |      |        |         |     |     |         |                          | 64   | 65  | 1      | 11.12  |        |        |
|                                 |      |        |         |     |     |         |                          | 71   | 72  | 1      | 5.59   |        |        |
| YMRC_060                        | RC   | 411753 | 6779574 | 444 | -60 | 300     | 102                      | 8    | 9   | 1      | 0.15   |        |        |



|          |     |        |         |      |     |     |          | 24   | 47  | 22      | 0.45        |   |   |
|----------|-----|--------|---------|------|-----|-----|----------|------|-----|---------|-------------|---|---|
|          |     |        |         |      |     |     |          | 24   | 47  | 23      | 0.45        |   |   |
|          |     |        |         |      |     |     | INCI     | 20   | 34  | 8       | 0.80        |   |   |
|          |     |        |         |      |     |     |          | 58   | 99  | 41      | 1.77        |   |   |
|          |     |        |         |      |     |     | Inci     | 07   | 92  | 25      | 2.73        |   |   |
|          |     |        |         |      |     |     | and      | 67   | 68  | 1       | 15.00       |   |   |
|          | 50  |        |         |      |     |     |          | 84   | 86  | 2       | 7.85        |   |   |
| YMRC_061 | RC  | 411/34 | 6779606 | 446  | -60 | 300 | /8       | 0    | 2   | 2       | 0.24        |   |   |
|          |     |        |         |      |     |     |          | 5    | 7   | 2       | 0.15        |   |   |
|          |     |        |         |      |     |     |          | 13   | 26  | 13      | 0.33        |   |   |
|          |     |        |         |      |     |     | incl     | 13   | 15  | 2       | 0.90        |   |   |
|          |     |        |         |      |     |     |          | 19   | 20  | 1       | 0.63        |   |   |
|          |     |        |         |      |     |     |          | 40   | 67  | 27      | 1.29        |   |   |
|          |     |        |         |      |     |     | incl     | 60   | 67  | 7       | 3.61        |   |   |
|          |     |        |         |      |     |     | and      | 62   | 67  | 5       | 4.52        |   |   |
|          |     |        |         |      |     |     |          | 75   | 77  | 2       | 0.12        |   |   |
| YMRC_062 | RC  | 411757 | 6779594 | 445  | -60 | 300 | 120      | 0    | 1   | 1       | 0.23        |   |   |
|          |     |        |         |      |     |     |          | 12   | 33  | 21      | 0.52        |   |   |
|          |     |        |         |      |     |     | incl     | 14   | 20  | 6       | 1.29        |   |   |
|          |     |        |         |      |     |     |          | 40   | 41  | 1       | 2.75        |   | ļ |
|          |     |        |         |      |     |     |          | 55   | 98  | 43      | 1.43        |   |   |
|          |     |        |         |      |     |     | incl     | 73   | 95  | 22      | 2.16        |   |   |
|          |     |        |         |      |     |     | and      | 63   | 64  | 1       | 5.78        |   |   |
|          |     |        |         |      |     |     |          | 86   | 87  | 1       | 7.77        |   |   |
|          |     |        |         |      |     |     |          | 103  | 105 | 2       | 0.20        |   |   |
|          |     |        |         |      |     |     |          | 112  | 113 | 1       | 0.12        |   |   |
| YMRC_063 | RC  | 411778 | 6779584 | 446  | -60 | 300 | 138      | 0    | 1   | 1       | 0.13        |   |   |
|          |     |        |         |      |     |     |          | 25   | 29  | 4       | 0.19        |   |   |
|          |     |        |         |      |     |     |          | 30   | 31  | 1       | 0.13        |   |   |
|          |     |        |         |      |     |     |          | 34   | 35  | 1       | 0.12        |   |   |
|          |     |        |         |      |     |     |          | 40   | 62  | 22      | 0.56        |   |   |
|          |     |        |         |      |     |     | incl     | 48   | 56  | 8       | 1.12        |   |   |
|          |     |        |         |      |     |     |          | 66   | 67  | 1       | 0.21        |   |   |
|          |     |        |         |      |     |     |          | 69   | 70  | 1       | 0.19        |   |   |
|          |     |        |         |      |     |     |          | 78   | 123 | 45      | 1.97        |   |   |
|          |     |        |         |      |     |     | incl     | 85   | 118 | 33      | 2.63        |   |   |
|          |     |        |         |      |     |     | and      | 96   | 100 | 4       | 7.71        |   |   |
|          |     |        |         |      |     |     |          | 99   | 100 | 1       | 18.89       |   |   |
|          |     |        |         |      |     |     |          | 113  | 117 | 4       | 8.39        |   |   |
|          |     |        |         |      |     |     |          | 116  | 117 | 1       | 19.17       |   |   |
|          |     |        |         |      |     |     |          | 130  | 131 | 1       | 0.14        |   |   |
| YMRC 064 | RC  | 411683 | 6779654 | 446  | -60 | 300 | 84       | 35   | 36  | 1       | 0.17        |   |   |
|          |     |        |         |      |     |     | <u> </u> | 53   | 56  | . 3     | 0.10        |   |   |
|          |     |        |         |      |     |     |          | 59   | 60  | 1       | 0.20        |   |   |
|          |     |        |         |      |     |     |          | 60   | 70  | 1       | 0.12        |   |   |
| YMRC 065 | RC. | 411705 | 6779640 | 444  | -60 | 300 | an       | 10   | 30  | 11      | 2 14        |   |   |
|          | NO  | +11700 | 0119040 | -++4 | -00 | 300 | incl     | 21   | 20  | ρ<br>ΓΙ | 2.14        | ļ |   |
|          |     |        |         |      |     |     | mer      | 21   | 29  | 0       | 2.0/        |   |   |
|          |     |        |         |      |     |     | ana      | 23   | 20  | 4       | 0.77        |   |   |
|          |     |        |         |      |     |     |          | 23   | 24  | 1       | <b>3.23</b> |   |   |
|          | 1   |        | 1       | 1    | 1   | 1   | 1        | - 33 | 34  |         | U. 10       | 1 | 1 |



| Ì          |    |        |         |     |     |     |      | 46  | E2  | -  | 0.42  |   |   |
|------------|----|--------|---------|-----|-----|-----|------|-----|-----|----|-------|---|---|
|            |    |        |         |     |     |     |      | 40  | 53  | 1  | 0.43  |   |   |
|            |    |        |         |     |     |     | INCI | 50  | 51  | 1  | 1.79  |   |   |
|            |    |        |         |     |     |     |      | 80  | 83  | 3  | 1.48  |   |   |
| \///EQ.000 | 50 | 444700 | 0770004 | 440 |     |     | inci | 80  | 81  | 1  | 3.81  |   |   |
| YMRC_066   | RC | 411723 | 6779631 | 446 | -60 | 300 | 90   | 21  | 24  | 3  | 0.19  |   |   |
|            |    |        |         |     |     |     |      | 28  | 29  | 1  | 0.11  |   |   |
|            |    |        |         |     |     |     |      | 32  | 33  | 1  | 0.41  |   |   |
|            |    |        |         |     |     |     |      | 35  | 37  | 2  | 0.38  |   |   |
|            |    |        |         |     |     |     |      | 40  | 41  | 1  | 0.33  |   |   |
|            |    |        |         |     |     |     |      | 46  | 55  | 9  | 0.72  |   |   |
|            |    |        |         |     |     |     | incl | 48  | 52  | 4  | 1.35  |   |   |
| YMRC_067   | RC | 411740 | 6779619 | 446 | -60 | 300 | 90   | 0   | 2   | 2  | 0.17  |   |   |
|            |    |        |         |     |     |     |      | 18  | 64  | 46 | 0.66  |   |   |
|            |    |        |         |     |     |     | incl | 43  | 63  | 20 | 1.32  |   |   |
| YMRC_068   | RC | 411763 | 6779610 | 447 | -60 | 300 | 120  | 0   | 33  | 33 | 0.50  |   |   |
|            |    |        |         |     |     |     | incl | 0   | 7   | 7  | 1.00  |   |   |
|            |    |        |         |     |     |     |      | 12  | 15  | 3  | 0.72  |   |   |
|            |    |        |         |     |     |     |      | 23  | 24  | 1  | 0.86  |   |   |
|            |    |        |         |     |     |     |      | 29  | 32  | 3  | 0.58  |   |   |
|            |    |        |         |     |     |     |      | 45  | 52  | 7  | 0.53  |   |   |
|            |    |        |         |     |     |     | incl | 46  | 51  | 5  | 0.65  |   |   |
|            |    |        |         |     |     |     |      | 63  | 102 | 39 | 0.60  |   |   |
|            |    |        |         |     |     |     | incl | 67  | 75  | 8  | 1.01  |   |   |
|            |    |        |         |     |     |     | and  | 79  | 82  | 3  | 1.18  |   |   |
|            |    |        |         |     |     |     |      | 87  | 90  | 3  | 1.36  |   |   |
|            |    |        |         |     |     |     |      | 98  | 102 | 4  | 0.85  |   |   |
|            |    |        |         |     |     |     |      | 115 | 116 | 1  | 0.89  |   |   |
| YMRC_069   | RC | 411783 | 6779600 | 447 | -60 | 300 | 138  | 0   | 1   | 1  | 0.23  |   |   |
|            |    |        |         |     |     |     |      | 12  | 13  | 1  | 0.10  |   |   |
|            |    |        |         |     |     |     |      | 28  | 32  | 4  | 0.16  |   |   |
|            |    |        |         |     |     |     |      | 39  | 40  | 1  | 0.55  |   |   |
|            |    |        |         |     |     |     |      | 45  | 54  | 9  | 0.26  |   |   |
|            |    |        |         |     |     |     | incl | 52  | 53  | 1  | 1.23  |   |   |
|            |    |        |         |     |     |     |      | 64  | 69  | 5  | 0.37  |   |   |
|            |    |        |         |     |     |     | incl | 64  | 65  | 1  | 1.00  |   |   |
|            |    |        |         |     |     |     |      | 76  | 77  | 1  | 0.35  |   |   |
|            | 1  |        |         |     | 1   |     |      | 82  | 124 | 42 | 2.83  |   |   |
|            |    |        |         |     |     |     | incl | 89  | 110 | 30 | 3 87  |   |   |
|            |    |        |         |     |     |     | and  | 95  | 96  | 1  | 6 98  |   |   |
|            |    |        |         |     |     |     | una  | 100 | 115 | 15 | 5.01  |   |   |
|            |    |        |         |     |     |     |      | 106 | 102 | 2  | 20.26 |   |   |
|            | DC | 11100E | 6770504 | 110 | 60  | 200 | 120  | 24  | 25  | 1  | 0.17  |   |   |
|            | RU | 411005 | 0119091 | 440 | -00 | 300 | 130  | 24  | 20  | 4  | 0.17  |   |   |
|            |    |        |         |     |     |     |      | 40  | 47  |    | 0.12  |   |   |
|            |    |        |         |     |     |     |      | 54  | 56  | 2  | 0.15  |   |   |
|            |    |        |         |     |     |     |      | 61  | 73  | 12 | 0.14  |   |   |
|            |    |        |         |     |     |     |      | /6  | 17  | 1  | 0.24  |   |   |
|            |    |        |         |     |     |     |      | 81  | 82  | 1  | 0.19  |   |   |
|            |    |        |         |     |     |     |      | 86  | 95  | 9  | 0.23  |   |   |
|            | 1  |        | 1       | l l | l I | 1   | incl | 87  | 89  | 2  | 0.69  | 1 | 1 |



|            |    |        |         |     | ĺ   |     |      |     |     | l      |       |  |  |
|------------|----|--------|---------|-----|-----|-----|------|-----|-----|--------|-------|--|--|
|            |    |        |         |     |     |     |      | 102 | 113 | 11     | 0.59  |  |  |
|            |    |        |         |     |     |     | incl | 105 | 108 | 3      | 1.28  |  |  |
|            |    |        |         |     |     |     |      | 119 | 138 | 19     | 1.13  |  |  |
|            |    |        |         |     |     |     | incl | 121 | 126 | 5      | 3.39  |  |  |
|            |    |        |         |     |     |     | and  | 123 | 125 | 2      | 7.20  |  |  |
|            |    |        |         |     |     |     |      | 130 | 132 | 2      | 1.42  |  |  |
| YMRC_071   | RC | 411716 | 6779660 | 444 | -60 | 300 | 90   | 22  | 55  | 33     | 3.35  |  |  |
|            |    |        |         |     |     |     | incl | 33  | 54  | 21     | 5.14  |  |  |
|            |    |        |         |     |     |     | and  | 34  | 40  | 6      | 13.14 |  |  |
|            |    |        |         |     |     |     |      | 36  | 40  | 4      | 16.16 |  |  |
|            |    |        |         |     |     |     |      | 43  | 44  | 1      | 7.25  |  |  |
|            |    |        |         |     |     |     |      | 64  | 65  | 1      | 0.10  |  |  |
|            |    |        |         |     |     |     |      | 78  | 79  | 1      | 0.56  |  |  |
| YMRC_072   | RC | 411734 | 6779652 | 445 | -60 | 300 | 84   | 46  | 62  | 16     | 1.27  |  |  |
|            |    |        |         |     |     |     | incl | 52  | 62  | 10     | 1.94  |  |  |
|            |    |        |         |     |     |     | and  | 53  | 54  | 1      | 8.97  |  |  |
| YMRC_073   | RC | 411753 | 6779641 | 445 | -60 | 300 | 90   | 37  | 42  | 5      | 0.25  |  |  |
|            |    |        |         |     |     |     | incl | 40  | 41  | 1      | 0.72  |  |  |
|            |    |        |         |     |     |     |      | 58  | 79  | 21     | 0.35  |  |  |
|            |    |        |         |     |     |     | incl | 67  | 71  | 4      | 1.12  |  |  |
|            |    |        |         |     |     |     |      | 86  | 87  | 1      | 1 73  |  |  |
|            | RC | 111773 | 6770630 | 116 | -60 | 300 | 120  | 8   | 54  |        | 0.52  |  |  |
| 111110_074 |    | 411775 | 0113030 | 440 | -00 | 500 | inal | 20  | 50  | 10     | 1.64  |  |  |
|            |    |        |         |     |     |     | and  | 30  | 50  | 12     | 6.00  |  |  |
|            |    |        |         |     |     |     | and  | 44  | 45  | 1      | 0.09  |  |  |
|            |    |        |         |     |     |     |      | 59  | 61  | 2      | 0.20  |  |  |
|            |    |        |         |     |     |     |      | 64  | 66  | 2      | 0.35  |  |  |
|            |    |        |         |     |     |     |      | 70  | /1  | 1      | 0.14  |  |  |
|            |    |        |         |     |     |     |      | 73  | 109 | 36     | 2.01  |  |  |
|            |    |        |         |     |     |     | incl | 81  | 103 | 22     | 3.21  |  |  |
|            |    |        |         |     |     |     | and  | 85  | 87  | 2      | 5.50  |  |  |
|            |    |        |         |     |     |     |      | 91  | 98  | 7      | 6.51  |  |  |
|            |    |        |         |     |     |     | incl | 96  | 97  | 1      | 25.93 |  |  |
| YMRC_075   | RC | 411795 | 6779617 | 445 | -60 | 300 | 138  | 0   | 7   | 7      | 0.10  |  |  |
|            |    |        |         |     |     |     |      | 11  | 12  | 1      | 0.17  |  |  |
|            |    |        |         |     |     |     |      | 24  | 43  | 19     | 0.23  |  |  |
|            |    |        |         |     |     |     | incl | 26  | 27  | 1      | 0.78  |  |  |
|            |    |        |         |     |     |     |      | 58  | 60  | 2      | 0.13  |  |  |
|            |    |        |         |     |     |     |      | 76  | 83  | 7      | 0.20  |  |  |
|            |    |        |         |     |     |     |      | 93  | 94  | 1      | 0.22  |  |  |
|            |    |        |         |     |     |     |      | 100 | 135 | 35     | 1.46  |  |  |
|            |    |        |         |     |     |     | incl | 109 | 126 | 17     | 2.67  |  |  |
|            |    |        |         |     |     |     | and  | 120 | 121 | 1      | 19.75 |  |  |
|            |    |        |         |     |     |     |      | 137 | 138 | 1      | 0.16  |  |  |
| YMRC 076   | RC | 411723 | 6779679 | 444 | -60 | 300 | 84   | 34  | 35  | 1      | 0.24  |  |  |
|            |    |        |         |     |     |     | -    | 44  | 54  | 10     | 0.83  |  |  |
|            |    |        |         |     |     |     | incl | 49  | 51  | 2      | 3.35  |  |  |
|            |    |        |         |     |     |     | and  | 40  | 50  | 1      | 5.88  |  |  |
|            |    |        |         |     |     |     | 3110 | 62  | 70  | ,<br>8 | 0.55  |  |  |
| <u> </u>   |    |        |         |     |     |     | incl | 62  | 64  | 1      | 0.00  |  |  |



|          |             |        |         |     | ĺ   |     |       | 67     | <b>c</b> 0 |      | 0.75   |   |          |
|----------|-------------|--------|---------|-----|-----|-----|-------|--------|------------|------|--------|---|----------|
|          | 50          |        |         |     |     |     | and   | 67     | 60         | 1    | 2.75   |   |          |
| YMRC_077 | RC          | 411/41 | 6779669 | 443 | -60 | 300 | 84    | 0      | 1          | 1    | 0.11   |   |          |
|          |             |        |         |     |     |     |       | 46     | 60         | 14   | 15.48  |   |          |
|          |             |        |         |     |     |     | incl  | 48     | 57         | 9    | 23.98  |   |          |
|          |             |        |         |     |     |     | and   | 51     | 53         | 2    | 101.50 |   |          |
|          |             |        |         |     |     |     |       | 66     | 68         | 2    | 0.17   |   |          |
|          | RC/         |        |         |     |     |     |       | 71     | 73         | 2    | 0.15   |   |          |
| PDDH003  | Core        | 411743 | 6779558 | 440 | -60 | 343 | 228.3 | 80.3   | 121.3      | 41   | 1.89   |   |          |
| PDDH004  | Core        | 411814 | 6779654 | 440 | -60 | 270 | 204.5 | 113.2  | 145.6      | 32.4 | 2.63   |   |          |
|          |             |        |         |     |     |     | incl  | 118.18 | 124.13     | 5.95 | 9.34   |   |          |
|          |             |        |         |     |     |     | and   | 128.13 | 133.78     | 5.65 | 3.42   |   | ļ        |
|          |             |        |         |     |     |     |       | 142.7  | 145.6      | 2.9  | 1.54   |   |          |
| YDC002   | RC/<br>Core | 411864 | 6779627 | 444 | -60 | 256 | 198   | 173    | 195        | 22   | 0.97   |   |          |
|          |             |        |         |     |     |     | incl  | 173    | 178        | 5    | 2.00   |   |          |
| YMRC078  | RC          | 411767 | 6779651 | 441 | -60 | 300 | 106   | 0      | 15         | 15   | 0.20   |   |          |
|          |             |        |         |     |     |     |       | 25     | 29         | 4    | 0.31   |   |          |
|          |             |        |         |     |     |     | incl  | 25     | 27         | 2    | 0.65   |   |          |
|          |             |        |         |     |     |     |       | 53     | 54         | 1    | 0.23   |   |          |
|          |             |        |         |     |     |     |       | 63     | 64         | 1    | 0.32   |   |          |
|          |             |        |         |     |     |     |       | 74     | 75         | 1    | 0.2    |   |          |
|          |             |        |         |     |     |     |       | 78     | 80         | 2    | 0.13   |   |          |
|          |             |        |         |     |     |     |       | 90     | 100        | 10   | 0.44   |   |          |
|          |             |        |         |     |     |     | incl  | 91     | .00        | 1    | 3.26   |   |          |
| YMRC079  | RC          | 411802 | 6779633 | 452 | -60 | 300 | 148   | 21     | 23         | 2    | 0.1    |   |          |
|          | 110         | TTTOOL | 0110000 | 102 | 00  |     | 110   | 29     | 42         | 13   | 0.31   |   |          |
|          |             |        |         |     |     |     | incl  | 36     | 37         | 1    | 0.69   |   |          |
|          |             |        |         |     |     |     | inci  | 45     | 46         | 1    | 0.03   |   |          |
|          |             |        |         |     |     |     |       | 57     | 58         | 1    | 0.1    |   |          |
|          |             |        |         |     |     |     |       | 97     | 02         | 6    | 0.26   |   |          |
|          |             |        |         |     |     |     | incl  | 07     | 01         | 1    | 0.20   |   |          |
|          |             |        |         |     |     |     | mer   | 106    | 125        | 20   | 0.30   |   |          |
|          |             |        |         |     |     |     | inal  | 100    | 130        | 29   | 0.23   |   |          |
|          |             |        |         |     |     |     | inci  | 109    | 110        | 1    | 1.12   |   |          |
|          |             |        |         |     |     |     |       | 120    | 12/        | 1    | 0.57   |   |          |
| VNDOCCO  | 50          | 44740  | 6770711 | 400 | ~~~ | 200 | 400   | 130    | 131        | 1    | 0.71   |   |          |
|          | KU          | 411/43 | 11/9/11 | 439 | -00 | 300 | 100   | 0      | 4          | 4    | 0.13   |   |          |
|          | 50          | 444704 | 0770700 |     |     |     | 400   | 68     | 70         | 2    | 0.15   |   |          |
| YMRC081  | RC          | 411/61 | 6119100 | 441 | -60 | 300 | 100   | 0      | 1          | 1    | 0.1    |   |          |
| VADOCCO  | 50          | 4447   | 0770000 |     |     |     | 440   | 63     | 64         | 1    | 0.13   |   |          |
| YMRC082  | RC          | 411777 | 6779690 | 441 | -60 | 300 | 118   | 40     | 41         | . 1  | 0.28   |   |          |
|          |             |        |         |     |     |     |       | 46     | 47         | 1    | 0.1    |   |          |
|          |             |        |         |     |     |     |       | 59     | 61         | 2    | 0.15   |   |          |
|          |             |        |         |     |     |     |       | 71     | 77         | 6    | 0.1    |   |          |
|          |             |        |         |     |     |     |       | 85     | 86         | 1    | 0.11   |   |          |
| YMRC083  | RC          | 411816 | 6779670 | 440 | -60 | 300 | 148   | 34     | 38         | 4    | 0.24   |   | <u> </u> |
|          |             |        |         |     |     |     | incl  | 35     | 36         | 1    | 0.62   |   | <u> </u> |
|          |             |        |         |     |     |     |       | 49     | 58         | 9    | 0.13   |   | <u> </u> |
|          |             |        |         |     |     |     | incl  | 52     | 53         | 1    | 0.71   |   | <u> </u> |
| YMRC084  | RC          | 411834 | 6779616 | 447 | -60 | 300 | 178   | 28     | 30         | 2    | 0.14   |   | <u> </u> |
|          |             |        |         | 1   |     |     | 1     | 47     | 50         | 3    | 0.12   | 1 | 1        |



|         | l i i i i i i i i i i i i i i i i i i i |        |         | I   | 1   |     | 1    |                | I   | 1  | 1    |       |         |
|---------|-----------------------------------------|--------|---------|-----|-----|-----|------|----------------|-----|----|------|-------|---------|
|         |                                         |        |         |     |     |     |      | 60             | 62  | 2  | 0.29 |       |         |
|         |                                         |        |         |     |     |     |      | 67             | 80  | 13 | 0.26 |       |         |
|         |                                         |        |         |     |     |     | incl | 73             | 74  | 1  | 1.65 |       |         |
|         |                                         |        |         |     |     |     |      | 100            | 102 | 2  | 0.13 |       |         |
|         |                                         |        |         |     |     |     |      | 108            | 110 | 2  | 0.36 |       |         |
|         |                                         |        |         |     |     |     |      | 118            | 129 | 11 | 0.22 |       |         |
|         |                                         |        |         |     |     |     | incl | 127            | 128 | 1  | 0.73 |       |         |
|         |                                         |        |         |     |     |     |      | 140            | 149 | 9  | 0.23 |       |         |
|         |                                         |        |         |     |     |     | incl | 147            | 148 | 1  | 1.04 |       |         |
| YMRC085 | RC                                      | 411762 | 6779546 | 453 | -60 | 300 | 124  | 0              | 2   | 2  | 0.19 |       |         |
|         |                                         |        |         |     |     |     |      | 17             | 22  | 5  | 0.13 |       |         |
|         |                                         |        |         |     |     |     |      | 44             | 57  | 13 | 0.2  |       |         |
|         |                                         |        |         |     |     |     | incl | 54             | 55  | 1  | 0.73 |       |         |
|         |                                         |        |         |     |     |     |      | 64             | 65  | 1  | 0.15 |       |         |
|         |                                         |        |         |     |     |     |      | 81             | 110 | 29 | 1.35 | 1.08  | 1042    |
|         |                                         |        |         |     |     |     | incl | 89             | 100 | 11 | 3.15 | 2.1   | 1827.65 |
|         |                                         |        |         |     |     |     | and  | 94             | 97  | 3  | 8.13 | 6.17  | 5105.4  |
|         |                                         |        |         |     |     |     | and  | 94             | 95  | 1  | 21.6 | 10.23 | 11914.7 |
|         |                                         |        |         |     |     |     |      | 117            | 118 | 1  | 0.12 |       |         |
| YMRC086 | RC                                      | 411735 | 6779467 | 451 | -60 | 300 | 112  | 0              | 17  | 17 | 0.13 |       |         |
|         |                                         |        |         |     |     |     |      | 23             | 45  | 22 | 0.21 |       |         |
|         |                                         |        |         |     |     |     | incl | 23             | 27  | 4  | 0.5  |       |         |
|         |                                         |        |         |     |     |     |      | 54             | 96  | 42 | 0.53 |       |         |
|         |                                         |        |         |     |     |     | incl | 78             | 87  | 9  | 1.74 |       |         |
|         |                                         |        |         |     |     |     | and  | 81             | 84  | 3  | 4.51 |       |         |
|         |                                         |        |         |     |     |     |      | 102            | 103 | 1  | 0.42 |       |         |
|         |                                         |        |         |     |     |     |      | 109            | 110 | 1  | 0.28 |       |         |
| YMRC087 | RC                                      | 411770 | 6779449 | 451 | -60 | 300 | 148  | 8              | q   | 1  | 0.12 |       |         |
|         | 110                                     |        | 0110110 | 101 | 00  | 000 | 110  | 14             | 16  | 2  | 0.25 |       |         |
|         |                                         |        |         |     |     |     |      | 36             | 37  | 1  | 0.14 |       |         |
|         |                                         |        |         |     |     |     |      | 43             | 45  | 2  | 0.14 |       |         |
|         |                                         |        |         |     |     |     |      | 10             | 51  | 2  | 0.10 |       |         |
|         |                                         |        |         |     |     |     |      | <del>4</del> 3 | 61  | 6  | 0.26 |       |         |
|         |                                         |        |         |     |     |     | inal | 50             | 50  | 1  | 0.20 |       |         |
|         |                                         |        |         |     |     |     | mer  | 50             | 59  | 1  | 0.12 |       |         |
|         |                                         |        |         |     |     |     |      | 00             | 09  | 20 | 0.13 |       |         |
|         |                                         |        |         |     |     |     | inal | 00             | 100 | 20 | 0.55 |       |         |
|         |                                         |        |         |     |     |     | Inci | 95             | 100 | 5  | 1.22 |       |         |
|         |                                         |        |         |     |     |     |      | 112            | 113 | 1  | 0.1  |       |         |
|         |                                         |        |         |     |     |     |      | 119            | 139 | 20 | 0.18 |       |         |
|         |                                         |        |         |     |     |     |      | 145            | 148 | 3  | 0.35 |       |         |
|         |                                         |        |         |     |     |     | incl | 145            | 146 | 1  | 0.75 |       |         |
| YMRC088 | RC                                      | 411650 | 6779419 | 451 | -60 | 300 | 58   | 0              | 4   | 4  | 0.3  |       |         |
|         |                                         |        |         |     |     |     |      | 14             | 34  | 20 | 0.27 |       |         |
|         |                                         |        |         |     |     |     | incl | 27             | 28  | 1  | 0.76 |       |         |
|         |                                         |        |         |     |     |     |      | 42             | 43  | 1  | 0.1  |       |         |
|         |                                         |        |         |     |     |     |      | 57             | 58  | 1  | 1.69 |       |         |
| YMRC089 | RC                                      | 411709 | 6779387 | 446 | -60 | 300 | 112  | 34             | 35  | 1  | 0.11 |       |         |
|         |                                         |        |         |     |     |     |      | 55             | 59  | 4  | 0.21 |       |         |
|         |                                         |        |         |     |     |     |      | 68             | 112 | 44 | 0.19 |       |         |



|         |    | l      | 1       |     | 1   |     | 1    |     |     |    |      | 1        |
|---------|----|--------|---------|-----|-----|-----|------|-----|-----|----|------|----------|
|         |    |        |         |     |     |     | incl | 69  | 71  | 2  | 0.64 |          |
|         |    |        |         |     |     |     |      | 111 | 112 | 1  | 0.58 |          |
| YMRC090 | RC | 411746 | 6779367 | 445 | -60 | 300 | 148  | 10  | 12  | 2  | 0.32 |          |
|         |    |        |         |     |     |     |      | 16  | 1/  | 1  | 0.4  |          |
|         |    |        |         |     |     |     |      | 21  | 24  | 3  | 0.2  |          |
|         |    |        |         |     |     |     |      | 83  | 84  | 1  | 0.14 |          |
|         |    |        |         |     |     |     |      | 101 | 103 | 2  | 0.22 |          |
|         |    |        |         |     |     |     |      | 110 | 112 | 2  | 0.18 |          |
|         |    |        |         |     |     |     |      | 124 | 125 | 1  | 0.18 |          |
|         |    |        |         |     |     |     |      | 131 | 139 | 8  | 1.36 |          |
|         |    |        |         |     |     |     | incl | 131 | 134 | 3  | 3.2  |          |
|         |    |        |         |     |     |     | and  | 131 | 132 | 1  | 5.42 |          |
| YMRC091 | RC | 411803 | 6779722 | 445 | -60 | 300 | 104  | 0   | 1   | 1  | 0.29 |          |
|         |    |        |         |     |     |     |      | 32  | 45  | 13 | 0.32 |          |
|         |    |        |         |     |     |     | incl | 34  | 36  | 2  | 0.87 | <u> </u> |
|         |    |        |         |     |     |     | and  | 41  | 42  | 1  | 0.54 | -        |
|         |    |        |         |     |     |     |      | 58  | 67  | 9  | 0.14 | 1        |
| YMRC092 | RC | 411838 | 6779703 | 444 | -60 | 300 | 142  | 0   | 2   | 2  | 0.19 | 1        |
|         |    |        |         |     |     |     |      | 38  | 42  | 4  | 0.38 |          |
|         |    |        |         |     |     |     | incl | 38  | 39  | 1  | 0.86 |          |
|         |    |        |         |     |     |     |      | 52  | 65  | 13 | 0.14 |          |
|         |    |        |         |     |     |     |      | 68  | 69  | 1  | 0.18 |          |
|         |    |        |         |     |     |     |      | 123 | 124 | 1  | 0.13 |          |
| YMRCO93 | RC | 411865 | 6779690 | 448 | -60 | 300 | 58   | 16  | 27  | 11 | 0.29 |          |
|         |    |        |         |     |     |     | incl | 16  | 17  | 1  | 2.48 |          |
| YMRC094 | RC | 411886 | 6779680 | 447 | -60 | 300 | 70   | 38  | 39  | 1  | 0.23 |          |
|         |    |        |         |     |     |     |      | 46  | 49  | 3  | 0.13 |          |
|         |    |        |         |     |     |     |      | 53  | 54  | 1  | 0.11 |          |
| YMRC095 | RC | 411822 | 6779771 | 450 | -60 | 300 | 82   | 66  | 69  | 3  | 0.1  |          |
|         |    |        |         |     |     |     |      | 76  | 78  | 2  | 0.5  |          |
|         |    |        |         |     |     |     | incl | 76  | 77  | 1  | 0.8  | 1        |
| YMRC096 | RC | 411732 | 6779559 | 451 | -60 | 300 | 106  | 0   | 5   | 5  | 1.4  | 1        |
|         |    |        |         |     |     |     | incl | 1   | 4   | 3  | 2.21 |          |
|         |    |        |         |     |     |     | and  | 3   | 4   | 1  | 5.34 |          |
|         |    |        |         |     |     |     |      | 20  | 79  | 59 | 0.41 |          |
|         |    |        |         |     |     |     | incl | 24  | 27  | 3  | 0.89 |          |
|         |    |        |         |     |     |     | and  | 32  | 35  | 3  | 0.53 |          |
|         |    |        |         |     |     |     |      | 58  | 60  | 2  | 2.42 |          |
|         |    |        |         |     |     |     |      | 63  | 64  | 1  | 0.71 |          |
|         |    |        |         |     |     |     |      | 66  | 68  | 2  | 2.89 |          |
|         |    |        |         |     |     |     |      | 74  | 75  | 1  | 0.55 |          |
|         |    |        |         |     |     |     | ļ    | 86  | 87  | 1  | 0.28 | ļ        |
|         |    |        |         |     |     |     |      | 90  | 98  | 8  | 0.16 |          |
| YMRC097 | RC | 411703 | 6779486 | 450 | -60 | 300 | 70   | 0   | 4   | 4  | 0.22 |          |
|         |    |        |         |     |     |     |      | 8   | 9   | 1  | 0.16 |          |
|         |    |        |         |     |     |     |      | 11  | 26  | 15 | 0.2  |          |
|         |    |        |         |     |     |     |      | 30  | 33  | 3  | 0.21 |          |
|         |    |        |         |     |     |     |      | 39  | 42  | 3  | 0.14 |          |
|         |    |        |         |     |     |     |      | 47  | 70  | 23 | 0.47 |          |



|           |                   |        |         |     |     |     | inal   | 47     | 54     |       | 0.90  |  |
|-----------|-------------------|--------|---------|-----|-----|-----|--------|--------|--------|-------|-------|--|
|           |                   |        |         |     |     |     | Inci   | 41     | 51     | 4     | 0.69  |  |
|           |                   |        |         |     |     |     |        | 55     | 56     | 1     | 0.78  |  |
|           |                   |        |         |     |     |     |        | 58     | 61     | 3     | 0.48  |  |
|           |                   |        |         |     |     |     |        | 65     | 66     | 1     | 0.95  |  |
|           |                   |        |         |     |     |     |        | 69     | 70     | 1     | 1.03  |  |
| 05)/00000 | MR/<br>HQ         | 444705 | 0770574 | 450 |     |     | 105 70 | 404.07 |        |       |       |  |
| 25YMD001  | CORE              | 411795 | 6779571 | 453 | -60 | 300 | 165.70 | 104.27 | 140.03 | 35.76 | 2.14  |  |
|           |                   |        |         |     |     |     | incl   | 111.40 | 124.86 | 13.46 | 5.28  |  |
|           |                   |        |         |     |     |     | and    | 112.55 | 114.05 | 1.50  | 9.01  |  |
|           |                   |        |         |     |     |     |        | 117.47 | 123.60 | 6.13  | 8.00  |  |
|           |                   |        |         |     |     |     |        |        |        |       |       |  |
| 25YMD002  | MR/<br>HQ<br>CORE | 411847 | 6779586 | 453 | -60 | 300 | 210.70 | 162.03 | 186.00 | 23.97 | 2.54  |  |
|           |                   |        |         |     |     |     | incl   | 170.52 | 175.90 | 5.38  | 10.62 |  |
|           |                   |        |         |     |     |     | and    | 171.56 | 175.90 | 4.34  | 13.05 |  |



## Appendix Two – JORC Code, 2012 Edition – Table 1

## Section 1: Sampling Techniques and Data

| Criteria               | JORC Code explanation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Commentary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Sampling<br>techniques | <ul> <li>Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling.</li> <li>Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used.</li> <li>Aspects of the determination of mineralisation that are Material to the Public Report.</li> <li>In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information.</li> </ul> | <ul> <li>Results reported on in this announcement relate to samples recovered using Diamond Cored Drilling techniques.</li> <li>All of the drilling was completed by DDH1 Drilling, Canningvale WA.</li> <li>All coring was completed in HQ sized core (63.5mm diameter).</li> <li>Pre-collars were drilled using Mud-Rotary drilling techniques. No sampling of the precollared section of the hole was undertaken.</li> <li>All diamond drill core was logged on-site during the course of the drilling by Company field geologists capturing lithology, structure and geotechnical information.</li> <li>The entirety of the cored section of the hole was cut in half and sampled for gold and multi-elements.</li> <li>Sample intervals were determined by the logging, reflecting lithological contacts and alteration/mineralisation boundaries with a maximum sample length of 1 metre.</li> <li>Samples were delivered to Intertek Kalgoorlie for initial sample preparation.</li> <li>Gold and multi-element analyses were completed by Intertek Perth using 4 acid digest methods.</li> <li>The quality of the sampling is industry standard and was completed with the utmost care.</li> <li>Half core has been retained for future reference.</li> </ul> |
| Drilling techniques    | <ul> <li>Drill type (eg core, reverse<br/>circulation, open-hole<br/>hammer, rotary air blast,<br/>auger, Bangka, sonic, etc)<br/>and details (eg core diameter,<br/>triple or standard tube, depth<br/>of diamond tails, face-<br/>sampling bit or other type,<br/>whether core is oriented and</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <ul> <li>All of the drilling referred to in this<br/>announcement was completed by DDH1<br/>Drilling of Canningvale WA using a Sandvik<br/>1200 truck mounted drill rig.</li> <li>Pre-collars were completed using Mud-<br/>Rotary drilling techniques to variable<br/>depths (competent rock).</li> <li>Diamond coring commenced from the base<br/>of the pre-collared section of the hole and</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |



|                                                         | if so, by what method, etc).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <ul> <li>continued to termination depth.</li> <li>All coring was completed in HQ sized core (63.5mm diametre).</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|---------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Drill sample<br>recovery                                | <ul> <li>Method of recording and<br/>assessing core and chip<br/>sample recoveries and<br/>results assessed.</li> <li>Measures taken to maximise<br/>sample recovery and ensure<br/>representative nature of the<br/>samples.</li> <li>Whether a relationship exists<br/>between sample recovery<br/>and grade and whether<br/>sample bias may have<br/>occurred due to preferential<br/>loss/gain of fine/coarse<br/>material.</li> </ul>                                                                        | <ul> <li>Mud rotary pre-collars were not sampled.</li> <li>HQ diamond coring commenced at the base of the pre-collar in competent rock.</li> <li>Core recovery was generally excellent.</li> <li>Minor core loss occurred in very broken sections of the hole and was verified between ARI's field geologists and DDH1's Supervising Drillers and recorded as a part of the logging process.</li> <li>No relationship was displayed between recovery and grade nor loss/gain of fine/course material.</li> </ul>                                                                                                                                                                           |
| Logging                                                 | <ul> <li>Whether core and chip<br/>samples have been<br/>geologically and<br/>geotechnically logged to a<br/>level of detail to support<br/>appropriate Mineral Resource<br/>estimation, mining studies<br/>and metallurgical studies.</li> <li>Whether logging is qualitative<br/>or quantitative in nature. Core<br/>(or costean, channel, etc)<br/>photography.</li> <li>The total length and<br/>percentage of the relevant<br/>intersections logged.</li> </ul>                                              | <ul> <li>The data being reported on is not currently being used in Mineral Resource Estimates.</li> <li>Geological logging was completed on-site by ARI's field geologists to a high industry standard level which could support future studies in support of Mineral Resource estimation.</li> <li>Geological logging is qualitative in nature and records interpreted lithology, alteration, mineralisation, veining, structure and geotechnical (RQD) aspects.</li> <li>The cored sections of the hole(s) were logged in their entirety from the start of coring to the end of hole.</li> </ul>                                                                                         |
| Sub-sampling<br>techniques and<br>sample<br>preparation | <ul> <li>If core, whether cut or sawn<br/>and whether quarter, half or<br/>all core taken.</li> <li>If non-core, whether riffled,<br/>tube sampled, rotary split, etc<br/>and whether sampled wet or<br/>dry.</li> <li>For all sample types, the<br/>nature, quality and<br/>appropriateness of the<br/>sample preparation<br/>technique.</li> <li>Quality control procedures<br/>adopted for all sub-sampling<br/>stages to maximise<br/>representivity of samples.</li> <li>Measures taken to ensure</li> </ul> | <ul> <li>All core is orientated, reconstructed and marked at 1 metre intervals prior to logging, cutting and sampling to ensure samples are representative and that there is no bias introduced into the sampling procedure.</li> <li>The entire cored section of the hole was cut in half and sampled.</li> <li>Half core samples were delivered to Intertek for preparation and gold and multi-element analyses.</li> <li>Half core was retained in the core trays for future reference.</li> <li>Selected quarter core samples were taken for petrological studies to guide and support the logging.</li> <li>Field blanks and CRM standards were inserted every 25 samples.</li> </ul> |



|                                                  | that the sampling is<br>representative of the in situ<br>material collected, including<br>for instance results for field<br>duplicate/second-half<br>sampling.<br>• Whether sample sizes are<br>appropriate to the grain size<br>of the material being<br>sampled.                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <ul> <li>GEOSTATS standards or CRMs of 60 gram charges of G919-3 (Au grade of 0.87ppm Au), 916-2 (Au grade of 1.98ppm Au) and 918-2 (Au grade of 1.43ppm Au) and 919-8 (Au grade of 0.57ppm Au) were used in alternating and sporadic patterns at a ratio of 1 QAQC sample in 25 samples submitted.</li> <li>Samples are dried (nominal 110 degrees C), crushed and pulverized to produce a homogenous representative sub-sample for analysis. All samples are pulverised utilising Intertek preparation techniques.</li> <li>HQ sized core was chosen for this program over standard NQ2 sized core in order to recover larger sized samples.</li> <li>The Competent Person is of the opinion the drilling sampling and analytical methods are appropriate for the delineation and determination of gold mineralisation.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|--------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Quality of assay<br>data and<br>laboratory tests | <ul> <li>The nature, quality and<br/>appropriateness of the<br/>assaying and laboratory<br/>procedures used and whether<br/>the technique is considered<br/>partial or total.</li> <li>For geophysical tools,<br/>spectrometers, handheld XRF<br/>instruments, etc, the<br/>parameters used in<br/>determining the analysis<br/>including instrument make<br/>and model, reading times,<br/>calibrations factors applied<br/>and their derivation, etc.</li> <li>Nature of quality control<br/>procedures adopted (eg<br/>standards, blanks,<br/>duplicates, external<br/>laboratory checks) and<br/>whether acceptable levels of<br/>accuracy (ie lack of bias) and<br/>precision have been<br/>established.</li> </ul> | <ul> <li>Samples were delivered to Intertaek<br/>Kalgoorlie for initial sample preparation.</li> <li>Gold and multi-element analyses were<br/>undertaken by Intertek Genalysis in Perth,<br/>using routine fire assay and multi element<br/>analysis by FA50/OE04 and 4A/MS48</li> <li>This near-full digest is considered sufficient<br/>for this stage of exploration and the<br/>weathered nature of the samples.</li> <li>Gold analysis was undertaken with 50-gram<br/>Fire Assay with OES finish. The detection limit<br/>for gold via this method is 5ppb (0.005ppm).</li> <li>Laboratory QA/QC involves the use of internal<br/>lab standards using certified reference<br/>material, blanks, splits and replicates as part<br/>of the inhouse procedures. QC results (blanks,<br/>duplicates, standards) were in line with<br/>commercial procedures, reproducibility and<br/>accuracy.</li> <li>Multi-Element analyses were carried out<br/>combining a four-acid digestion with ICP-MS<br/>instrumentation. A four-acid digest is<br/>performed on 0.25g of sample to<br/>quantitatively dissolve most geological<br/>materials. Analytical analysis performed with<br/>a combination of ICP-OES &amp; ICP-MS. Element<br/>analyses include: Ag, Al, As, Ba, Be, Bi, Ca, Cd,<br/>Ce, Co, Cr, Cs, Cu, Fe, Ga, Ge, Hf, In, K, La, Li,<br/>Mg, Mn, Mo, Na, Nb, Ni, P, Pb, Rb, Re, S, Sb,<br/>Sc, Se, Sn, Sr, Ta, Te, Th, Ti, Tl, U, V, W, Y, Zn,<br/>and Zr.</li> <li>The analytical method employed is<br/>appropriate for the styles of mineralisation</li> </ul> |



|                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                            | <ul> <li>and target commodity present.</li> <li>No geophysical tools, spectrometers,<br/>handheld XRF instruments were used.</li> <li>QAQC analysis shows that the lab<br/>performed within the specifications of<br/>the QAQC protocols.</li> <li>No external laboratory checks have been<br/>completed.</li> </ul>                                                                                                                                                                                                                                                  |
|------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Verification of<br>sampling and<br>assaying                      | <ul> <li>The verification of significant<br/>intersections by either<br/>independent or alternative<br/>company personnel.</li> <li>The use of twinned holes.</li> <li>Documentation of primary<br/>data, data entry procedures,<br/>data verification, data storage<br/>(physical and electronic)<br/>protocols.</li> <li>Discuss any adjustment to<br/>assay data.</li> </ul>                            | <ul> <li>No umpire analysis has been performed.</li> <li>Data was collected on to standardised<br/>templates in the field and data cross<br/>checks were performed verifying field data<br/>and assay results.</li> <li>No adjustment to the available assay data<br/>has been made. For all intercepts, the first<br/>received assay result is always reported.</li> <li>Intersections reported are checked and<br/>verified by alternative company personnel<br/>typically Senior Supervising Geologists and<br/>the Exploration Manager/GM-Exploration.</li> </ul> |
| Location of data<br>points                                       | <ul> <li>Accuracy and quality of<br/>surveys used to locate drill<br/>holes (collar and down-hole<br/>surveys), trenches, mine<br/>workings and other locations<br/>used in Mineral Resource<br/>estimation.</li> <li>Specification of the grid<br/>system used.</li> <li>Quality and adequacy of<br/>topographic control.</li> </ul>                                                                      | <ul> <li>Drillhole collars are captured initially using handheld Garmin GPS unts with an accuracy of +/- 5 metres.</li> <li>Drill hole collars will be surveyed using a DGPS.</li> <li>GDA94 Zone 51 grid system was used, collars will be picked up by a qualified surveyor using a DGPS (Trimble S7).</li> <li>The surveyed collar coordinates are sufficiently accurate and precise to locate the drillholes</li> </ul>                                                                                                                                            |
| Data spacing and<br>distribution                                 | <ul> <li>Data spacing for reporting of<br/>Exploration Results.</li> <li>Whether the data spacing and<br/>distribution is sufficient to<br/>establish the degree of<br/>geological and grade<br/>continuity appropriate for the<br/>Mineral Resource and Ore<br/>Reserve estimation<br/>procedure(s) and<br/>classifications applied.</li> <li>Whether sample compositing<br/>has been applied.</li> </ul> | <ul> <li>The program is early stage exploration and the drillhole spacing is relatively wide.</li> <li>Mineral Resource Estimates are not currently being undertaken.</li> <li>No mineral classification is applied to the results at this stage.</li> <li>No sample compositing has been applied.</li> </ul>                                                                                                                                                                                                                                                         |
| Orientation of data<br>in relation to<br>geological<br>structure | <ul> <li>Whether the orientation of<br/>sampling achieves unbiased<br/>sampling of possible<br/>structures and the extent to<br/>which this is known,<br/>considering the deposit type.</li> <li>If the relationship between</li> </ul>                                                                                                                                                                    | <ul> <li>Holes were designed to test the target<br/>horizon orthogonal to both strike and depth<br/>to avoid introducing any bias.</li> <li>The drilling orientation and the orientation<br/>of key mineralised structures has not<br/>introduced a bias.</li> </ul>                                                                                                                                                                                                                                                                                                  |



|                   | the drilling orientation and the<br>orientation of key mineralised<br>structures is considered to<br>have introduced a sampling<br>bias, this should be assessed<br>and reported if material. | • All drillholes were downhole surveyed using a north seeking Gyro survey tool.                                                                                                                                                                                                                                                                                                                                                                             |
|-------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Sample security   | <ul> <li>The measures taken to<br/>ensure sample security.</li> </ul>                                                                                                                         | <ul> <li>The chain of custody from rig to the laboratory was overseen by the Company's Site Supervising Geologist. At no stage has any person or entity outside of, the contract geologists, the drilling contractor, contract courier, and the assay laboratory come into contact with the samples.</li> <li>Samples were dispatched to the Intertek laboratory in Kalgoorlie for preparation then to Intertek Perth (Maddington) for analysis.</li> </ul> |
| Audits or reviews | <ul> <li>The results of any audits or<br/>reviews of sampling<br/>techniques and data.</li> </ul>                                                                                             | • No external audit of the results, beyond the laboratory internal QAQC measures, has taken place.                                                                                                                                                                                                                                                                                                                                                          |
|                   |                                                                                                                                                                                               | <ul> <li>QA/QC data is regularly reviewed by ARI<br/>and it's Contract Database Manager (ERM)</li> </ul>                                                                                                                                                                                                                                                                                                                                                    |
|                   |                                                                                                                                                                                               | • Results provide a high-level of confidence in the assay data.                                                                                                                                                                                                                                                                                                                                                                                             |

## Section 2: Reporting of Exploration Results

| Criteria                                      | JORC Code explanation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Commentary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|-----------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Mineral tenement<br>and land tenure<br>status | <ul> <li>Type, reference<br/>name/number, location and<br/>ownership including<br/>agreements or material issues<br/>with third parties such as joint<br/>ventures, partnerships,<br/>overriding royalties, native title<br/>interests, historical sites,<br/>wilderness or national park<br/>and environmental settings.</li> <li>The security of the tenure held<br/>at the time of reporting along<br/>with any known impediments<br/>to obtaining a licence to<br/>operate in the area.</li> </ul> | <ul> <li>The drilling being reported on in this announcement was undertaken entirely within Mining Lease, M39/410.</li> <li>Arika operates within a Joint Venture Agreement with Nex Metals Exploration (NME) and holds 80% with NME holding the remaining 20%.</li> <li>Refer to announcement "Metalicity Achieves Earn-In On The Kookynie &amp; Yundamindra Gold Projects" dated 21<sup>st</sup> December 2023.</li> <li>No impediments exist to obtaining a license to operate over the listed tenure at the time of reporting.</li> </ul> |
| Exploration done<br>by other parties          | • Acknowledgment and appraisal of exploration by other parties.                                                                                                                                                                                                                                                                                                                                                                                                                                        | <ul> <li>Arika Ltd has completed a review of<br/>historical data and made corrections to<br/>previously supplied data from the JV<br/>partner NME.</li> <li>The Yundamindra areas has been subject<br/>to multiple phases of exploration since<br/>discovery of gold before 1899. Further<br/>small-scale mining occurred until the<br/>1940's. Exploration activities between the</li> </ul>                                                                                                                                                 |



|         |                                              | late 1970's into the early 1980's was                                          |
|---------|----------------------------------------------|--------------------------------------------------------------------------------|
|         |                                              | completed by Pennzoil Australia,                                               |
|         |                                              | Kennecott Exploration with Hill Minerals,                                      |
|         |                                              | and Picon Exploration. From 1985 to 1994                                       |
|         |                                              | Mt Burgess Gold Mining Company un                                              |
|         |                                              | dertook significant exploration drilling to                                    |
|         |                                              | generate resource estimates for the                                            |
|         |                                              | western and eastern lines of mineralisation                                    |
|         |                                              | in 1988 and 1989 respectively. Sons of                                         |
|         |                                              | Gwalia entered into a JV with Mt Burgess in                                    |
|         |                                              | the mid 1990's which lasted until 1999                                         |
|         |                                              | then held the project tenements outright                                       |
|         |                                              | until 2003 which included exploration                                          |
|         |                                              | activities a re-optimisation study in 1997                                     |
|         |                                              | on part of the Western Line of                                                 |
|         |                                              | mineralisation as well as further resources                                    |
|         |                                              | estimates. Saracen Gold held the project                                       |
|         |                                              | tenements from 2006 until 2010 until it                                        |
|         |                                              | entered into a JV with NME. NME                                                |
|         |                                              | controlled the project outright from 2013                                      |
|         |                                              | until entering into a JV with Arika in 2019.                                   |
| Geology | <ul> <li>Deposit type, geological</li> </ul> | Yundamindra:                                                                   |
|         | setting and style of                         | • The Yundamindra Project lies within the                                      |
|         | mineralisation.                              | Murrin-Margaret sector of the Leonora-                                         |
|         |                                              | Laverton area; part of the north-                                              |
|         |                                              | northwest to south-southeast trending                                          |
|         |                                              | Norseman-Wiluna Greenstone Belt of                                             |
|         |                                              | the Eastern Goldfields Province of the                                         |
|         |                                              | Yilgarn Craton.                                                                |
|         |                                              | • The Murrin-Margaret sector is                                                |
|         |                                              | dominated by an upright, north to north-                                       |
|         |                                              | northwest trending asymmetric regional                                         |
|         |                                              | anticline (Eucalyptus Anticline) centred                                       |
|         |                                              | about the Eucalyptus area. The western                                         |
|         |                                              | limb of the regional anticline has been                                        |
|         |                                              | intruded by granitoids (Yundamindra                                            |
|         |                                              | area). Strike-slip faulting is dominant                                        |
|         |                                              | along the eastern limb.                                                        |
|         |                                              | • The Vundemindre Dreiset encompasses                                          |
|         |                                              | The fundamindra Project encompasses     zonos of gold minoralization occurring |
|         |                                              | along the margin of a regional scale                                           |
|         |                                              | horphlanda granodiorite batholith which                                        |
|         |                                              | intruded mafic lithologies. The contact                                        |
|         |                                              | is sub-divided into two flines? of                                             |
|         |                                              | mineralisation western and eastern                                             |
|         |                                              | minoratioation, western and eastern.                                           |
|         |                                              | • The Western Line consists of a north-                                        |
|         |                                              | northwest trending zone of generally                                           |
|         |                                              | continuous, east dipping quartz reefs                                          |
|         |                                              | and quartz filled shears in granitoids,                                        |
|         |                                              | near the contact between a large                                               |
|         |                                              | hornblende granodiorite pluton and a                                           |
|         |                                              | thin remnant greenstone succession.                                            |
|         |                                              | The lode generally strikes parallel to a                                       |



|                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <ul> <li>regional north-northwest schistosity in<br/>the mafic succession immediately to the<br/>west. Folding and faulting has<br/>dislocated the continuity of the lode in<br/>places and produced domal structures.</li> <li>The Eastern Line encompasses the<br/>eastern portion of the arcuate<br/>granodiorite/greenstone contact with<br/>gold mineralisation associated with<br/>quartz veining within the mafic<br/>succession and within quartz<br/>vein/stockwork within granodiorite.</li> <li>All exploration targets, prospects and<br/>deposits are interpreted as orogenic<br/>shear-hosted exploration targets for<br/>gold mineralisation.</li> </ul> |
|-----------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Drill hole<br>Information   | <ul> <li>A summary of all information<br/>material to the understanding<br/>of the exploration results<br/>including a tabulation of the<br/>following information for all<br/>Material drill holes:         <ul> <li>easting and northing of the<br/>drill hole collar</li> <li>elevation or RL (Reduced<br/>Level – elevation above sea<br/>level in metres) of the drill<br/>hole collar</li> <li>dip and azimuth of the hole</li> <li>down hole length and<br/>interception depth</li> <li>hole length.</li> </ul> </li> <li>If the exclusion of this<br/>information is justified on the<br/>basis that the information is<br/>not Material and this exclusion<br/>does not detract from the<br/>understanding of the report,<br/>the Competent Person should<br/>clearly explain why this is the<br/>case.</li> </ul> | <ul> <li>All discussion points are captured within the announcement above.</li> <li>For all drilling, dip and azimuth data is accurate to within +/-5° relative to MGA UTM grid (GDA94 Z51).</li> <li>For all drilling, down hole depth and end of hole length is accurate to with +/- 0.2m.</li> <li>All drillholes were surveyed downhole using a north seeking Gyro tool supplied by the drilling contractor.</li> <li>A combined collar and summary of significant intersection table is supplied in the appendices. Refer Table 1.</li> </ul>                                                                                                                      |
| Data aggregation<br>methods | <ul> <li>In reporting Exploration<br/>Results, weighting averaging<br/>techniques, maximum and/or<br/>minimum grade truncations<br/>(eg cutting of high grades) and<br/>cut-off grades are usually<br/>Material and should be stated.</li> <li>Where aggregate intercepts<br/>incorporate short lengths of<br/>high grade results and longer<br/>lengths of low grade results,</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                   | <ul> <li>Intercepts are reported as down-hole<br/>lengths on a maximum of 1 metre<br/>samples</li> <li>Gold intercepts have been calculated<br/>using the length-weighted average method.<br/>Specific higher grade intervals within an<br/>interval have been described as part of the<br/>overall intercept statement.</li> <li>Intercepts are reported as down-hole<br/>length and average gold intercepts are</li> </ul>                                                                                                                                                                                                                                            |



|                                                                              | <ul> <li>the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail.</li> <li>The assumptions used for any reporting of metal equivalent values should be clearly stated.</li> </ul>                                                                                                                                                       | <ul> <li>calculated and presented at a 0.1 g/t, 0.5 g/t, 5.0 and 10.0 g/t Au lower cut, no upper cut has been applied</li> <li>Intercepts were defined geologically based on an interpretation of the target zone at a given location. Length weighted grades were then calculated based on a sample returning an assay value of greater than 0.1 g/t Au for the low grade envelope and internal zones of greater than 0.5 g/t Au 5.0 g/t and 10.0 g/t Au respectively</li> <li>Generally, no more than 2 metres of internal material that graded less than 0.1 g/t Au was included except where a Raft or 'Horse' of lower grade country rock was interpreted as being within the targeted lode zone as defined by adjacent holes.</li> <li>Intervals were based on geology and no top cut off was applied.</li> <li>No metal equivalents are discussed or reported.</li> </ul> |
|------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Relationship<br>between<br>mineralisation<br>widths and<br>intercept lengths | <ul> <li>These relationships are particularly important in the reporting of Exploration Results.</li> <li>If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported.</li> <li>If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known').</li> </ul> | <ul> <li>All holes reported here are designed to intersect the target zone/mineralisation orthogonal to both strike and dip.</li> <li>Based on current interpretation true widths are estimated to be approximately 60% of the reported downhole intercepts for most of the holesd noting local variations in both dip and strike of the targeted lode.</li> <li>For hole 25YMD003 the downhole length is interpreted to be close to the true thickness due to a flexure/flattening of the lode structure at this location</li> </ul>                                                                                                                                                                                                                                                                                                                                            |
| Diagrams                                                                     | <ul> <li>Appropriate maps and<br/>sections (with scales) and<br/>tabulations of intercepts<br/>should be included for any<br/>significant discovery being<br/>reported These should<br/>include, but not be limited to a<br/>plan view of drill hole collar<br/>locations and appropriate<br/>sectional views.</li> </ul>                                                                                         | <ul> <li>Please see main body of the<br/>announcement for the relevant figures<br/>showing the drillholes completed.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Balanced reporting                                                           | <ul> <li>Where comprehensive<br/>reporting of all Exploration</li> </ul>                                                                                                                                                                                                                                                                                                                                          | • All results have been presented and all plans are presented in a form that allows                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |



|                                       | Results is not practicable,<br>representative reporting of<br>both low and high grades<br>and/or widths should be<br>practiced to avoid misleading<br>reporting of Exploration<br>Results.                                                                                                                                                                                                                                                                    | for the reasonable understanding and evaluation of exploration results.                                                                                                                                                                                                                                                            |
|---------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Other substantive<br>exploration data | <ul> <li>Other exploration data, if<br/>meaningful and material,<br/>should be reported including<br/>(but not limited to): geological<br/>observations; geophysical<br/>survey results; geochemical<br/>survey results; bulk samples –<br/>size and method of treatment;<br/>metallurgical test results; bulk<br/>density, groundwater,<br/>geotechnical and rock<br/>characteristics; potential<br/>deleterious or contaminating<br/>substances.</li> </ul> | <ul> <li>The area has had significant historical production recorded and is accessible via the MINEDEX database.</li> <li>All material results from geochemical, geophysical, geological mapping and drilling activities related to prospects across the Yundamindra Gold Project have been disclosed.</li> </ul>                  |
| Further work                          | <ul> <li>The nature and scale of<br/>planned further work (eg tests<br/>for lateral extensions or depth<br/>extensions or large-scale<br/>step-out drilling).</li> <li>Diagrams clearly highlighting<br/>the areas of possible<br/>extensions, including the main<br/>geological interpretations and<br/>future drilling areas, provided<br/>this information is not<br/>commercially sensitive.</li> </ul>                                                   | <ul> <li>Follow up exploration activities will<br/>include, but not limited to RC and diamond<br/>drilling and planned for the remainder of<br/>2025 pending outcomes from the drilling<br/>interpretation.</li> <li>Diagrams pertinent to the areas in<br/>question are supplied in the body of this<br/>announcement.</li> </ul> |

