

ASX RELEASE: 27 October 2025

DRILLING COMMENCES TO EXTEND KNOWN MINERALISATION AND TEST NEW TARGETS AT PENNYWEIGHT POINT, YUNDAMINDRA

Recent IP geophysical surveys have refined and extended new bedrock gold targets

KEY HIGHLIGHTS

- Expansional Reverse Circulation (RC) drilling has commenced at the Pennyweight Point prospect within the Yundamindra Gold Project
- Successful completion of IP geophysical surveys at Pennyweight Point have further refined and extended priority bedrock gold targets providing a predictive framework for targeting extensions and repetitions of the known mineralisation.
- Initial phase of drilling will focus on strike, plunge and depth extensions to a series of recently reported outstanding high-grade results, including:1:
 - o 35.76m @ 2.14g/t Au from 104.27m down-hole (25YMD001), including:
 - 13.46m @ 5.28g/t Au from 111.40m
 - o 23.97m @ 2.54g/t Au from 162.03m down-hole (25YMD002), including:
 - 5.38m @ 10.62g/t Au from 170.52m
 - 14m @ 15.48g/t Au from 46m (YMRC077)
 - o 30m @ 3.86g/t Au from 64m (YMRC069)
- Second phase will be high impact, drill testing of new high-priority 'blind' geophysical bedrock gold targets, identified from the recently completed geophysical surveys immediately north and south of Pennyweight Point.
- Third phase will be close-spaced orebody definition drilling at the Pennyweight Point deposit to confirm mineralisation controls and grade distribution to guide Maiden Resource Estimation modelling.

Arika Resources Limited (ASX: ARI) ("Arika" or "Company") is pleased to advise that an important new program of Reverse Circulation (RC) drilling has commenced at the advanced Pennyweight Point prospect within the Yundamindra Gold Project (80% Arika Resources Ltd; 20% Nex Metals), located near Leonora-Laverton in the world-class north-eastern goldfields mining district of Western Australia (Figures 1 and 6).

The Company has recently completed Induced Polarisation (IP) geophysical surveys over the Pennyweight Point deposit and surrounding area to augment the recently reported airborne magnetic and ground gravity survey results.

The combined data and results have greatly assisted in refining the existing targets and providing a predictive framework for locating extensions and repetitions to the known mineralisation.

¹ Please refer ARI ASX Announcement dated 10/04/2025, 20/09/2024 and 23/10/2024

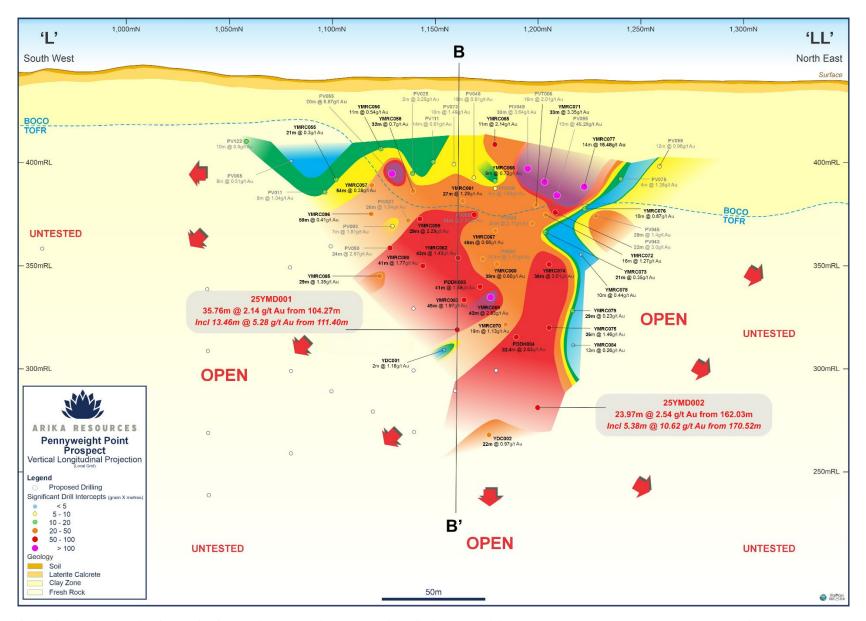


Figure 1: Pennyweight Point Vertical Longitudinal Projection looking (local) grid west showing Arika's recent drilling results presented as gxm contours (Au (g/t) x intersection length (m)) and proposed drillholes. Note that a series of RC holes drilled north and south of the main zone are now interpreted to have been terminated in hangingwall mineralisation without reaching the main target and as such were ineffective. Figure 5 presents a schematic cross-section through diamond drillhole 25YMD001.

Drill testing of high-priority targets at Pennyweight Point has now commenced.

The planned program will comprise approximately 5,000m of RC drilling including strike, plunge and depth extensions to a series of recently reported outstanding high-grade results, close-spaced orebody definition drilling to support resource modelling in conjunction with first-pass testing of new bedrock gold targets located north and south along strike from Pennyweight Point, where the bedrock geology of interest and the potential ore-hosting structures are hidden beneath a blanket of surficial cover and a deep weathering profile (Figures 1-5).

Pennyweight Point is emerging as a wide, high-grade lode gold system hosted within tonalite (granite) in sheared contact with an extensive package of mafic volcanic rocks (basalt). Within the area drill tested to date the mineralised zone strikes northeast, dips moderately southeast and plunges towards the south. Drilling to date has confirmed mineralisation over a strike length of 350m extending from surface to a vertical depth of 150m. The zone remains open in all directions.

Pennyweight Point was discovered as a result of bold, targeted drilling by Arika, to test for depth extensions within fresh rock beneath shallow prospector-scale workings and near-surface oxide gold intersections reported in shallow historical drilling.

Arika's drilling efforts at Pennyweight Point, as well as at the Yellow Brick Road/Landed at Last prospects, represent a key component of the Company's overall strategy at Yundamindra to fast-track discovery, deliver robust Mineral Resources Estimates and demonstrate the scale of the opportunity for rapid resource growth and development.

Commenting on the new phase of drilling, Arika's Managing Director Justin Barton said:

"We are pleased to see the drill rig return to Pennyweight Point, our highest rated and most advanced prospect within the Yundamindra Project.

"Importantly, we return to this exciting prospect armed with the knowledge gained from the important geophysical programs completed in recent weeks, which have delivered significant advances in our understanding of the ore-hosting structures and the likely places where we can find extensions of the known high-grade mineralisation.

"Pennyweight Point is shaping up alongside Landed at Last as the primary focus for initial resource development at Yundamindra. With this in mind, the initial phase of drilling will comprise close-spaced, orebody definition drilling before systematically stepping out to extend the deposit along strike and downplunge.

"We also plan to test a series of newly identified compelling bedrock gold targets that resemble the mineralisation at Pennyweight Point itself in terms of their geophysical and associated geochemical signatures. These targets offer the potential for breakthrough discoveries immediately along strike from the known mineralisation and show why we are so excited about the potential at Pennyweight Point.

"The new phase of drilling will comprise ~5,000m of RC drilling and will add to the already significant pipeline of drilling results being generated by the ongoing program."

The location of the new planned drill-holes is shown in long-section, cross-section and plan view in Figure 1 above and Figures 2, 3 and 4 below.

A summary of significant intersections for all holes completed at Pennyweight Point to date is included in Table 1, Appendix 1.

ABN: 92 086 839 992 www.arika.com.au

Phone: 08 6500 0202 enquiries@arika.com.au

GEOPHYSICAL SURVEYS

Arika recently completed ultra-detailed airborne magnetic and ground gravity surveys over the Pennyweight Point prospect and surrounding area resulting in the successful identification of 4 new high priority target areas, along strike from the known zone of mineralisation, displaying all of the characteristics of Pennyweight Point 'type' orogenic gold settings (Refer below and ASX Announcement. dated 15 September 2025).

New High Priority Gold Targets

Four previously reported large, discrete, 'blind' high priority bedrock gold targets have been identified through the application of high-resolution airborne magnetic and ground gravity geophysical surveys within the Pennyweight Point structural corridor, close to the eastern margin of the Danjo Granite batholith.

A brief description of each of the newly defined targets was presented previously and is provided again below for context.

Refer to Figure 3.

- PWP1: A discrete magnetic source with signs of multiple shearing events (N-S). Evidence of abundant pyrrhotite in rocks may indicate that the magnetism is related to a large concentration of pyrrhotite.
- **PWP2:** A possible southern repeat setting of PWP mineralisation. The main difference is that there is no equivalent low-density tonalite visible in the data.
- **PWP3:** A larger area of altered magnetism. The irregular distortions visible in the magnetic field suggest that this area and PWP4 may have been subjected to unusual physical and metamorphic processes. The localised magnetic highs (Abm) could be repeats of the magnetic source at PWP1.
- **PWP4:** A larger area of altered magnetism. The irregular distortions visible in the magnetic field suggest that this area may have been subjected to unusual physical and metamorphic processes. The localised magnetic highs (Abm) could be repeats of the magnetic source at PWP1.

INDUCED POLARISATION (IP) SURVEYS

To augment the results of the magnetic/gravity surveys and further refine these targets prior to drill testing, it was decided to test the area with electrical geophysics (IP). Arika engaged Kinematex Pty Ltd ("Kinematex") under the guidance of Core Geophysics, to undertake three (3) Dipole – Dipole Induced Polarisation survey lines. over selected areas. Two (2) traverses of 50m station spaced Dipole – Dipole IP "DD-IP" (n=8) and one (1) traverse of 100m stations spaced Dipole-Dipole (n=2) were completed for a total of 66 Stations and 4,150 Line/m. (Refer to Figures 2 and 3). Survey Specifications are included in JORC Table 1 at the rear of the announcement.

Key Findings

Whilst detailed interpretation of the results of the survey is ongoing, several key findings are emerging as follows:

- 1. Resistivity data is consistently mapping the prospective contact between the tonalite and the mafic sequence ie, the host position of the known Pennyweight Point mineralised zone.
- 2. Several subtle chargeability anomalies are present which are spatially associated with the prospective resistivity contact. These may represent broader, lower-grade sulphide alteration halos (pyrite/pyrrhotite) within the associated country rocks acting as pathfinders or vectors to strike and depth extensions and/or repetitions to the known ore zone.
- 3. Weak to moderate chargeability anomalies are identified within the resistive tonalite body northeast of Pennyweight Point. These are interpreted to represent:
 - Sulphide bearing phases or alteration zones within tonalite
 - A different intrusive phase
 - Potentially deeper or different style of mineralisation.

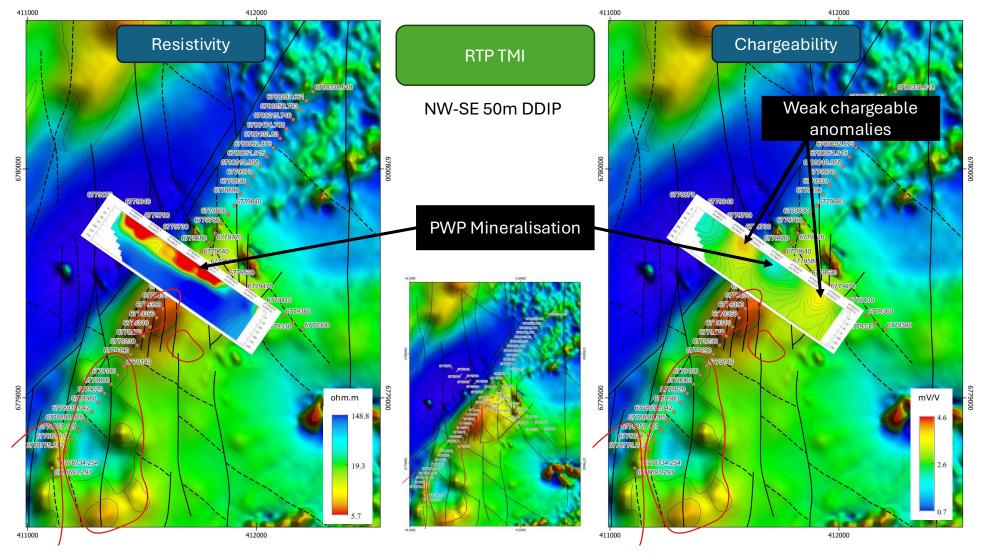


Figure 2: Yundamindra Project IP Geophysical Survey Line 1 pseudo sections over TMI.

The location of the surveys is shown on the image in the centre. Resistivity modelling is shown on the left, chargeability is shown on the right.

Pennyweight Point sits within a well-defined NE trending structural corridor visible in geophysical imagery, extending over a strike length of at least ~4.5km. Note the chargeable anomalies east and west of Pennyweight Point.

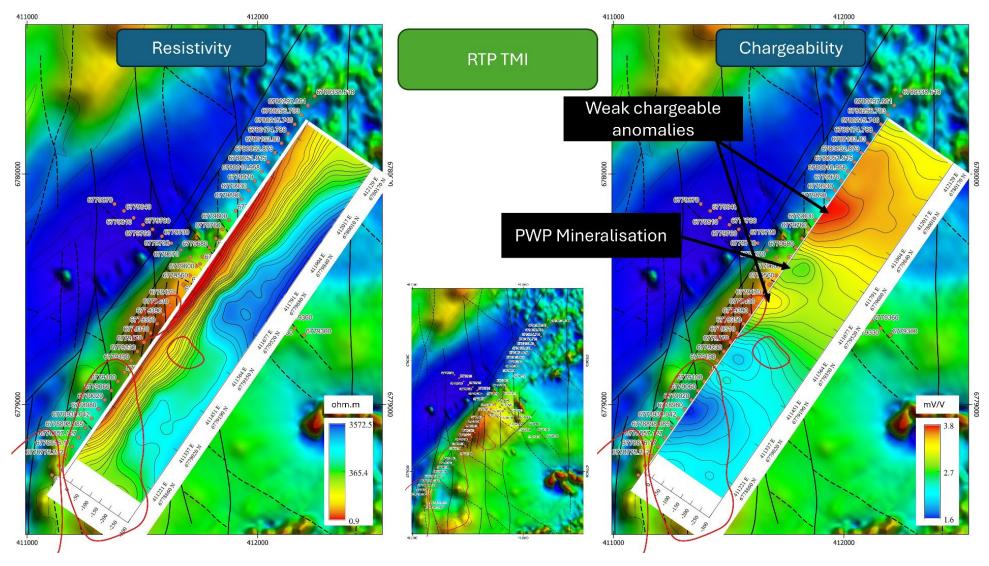


Figure 3: Yundamindra Project IP Geophysical Survey Line 2 pseudo sections over TMI.

The location of the surveys is shown on the image in the centre. Resistivity modelling is shown on the left, chargeability is shown on the right. Note the chargeable anomalies identified north and south along strike from Pennyweight Point.

Primary Takeaways

Using a combination of fit-for-purpose geophysical techniques is proving to be a powerful tool for mapping buried basement geology and structure rather than a direct ore finding technique.

The application and combination of multiple geophysical data sets, Magnetics/Gravity/IP Electrical Geophysics has been successful in mapping key gold mineralisation controlling features—in particular the resistivity gradient marking the tonalite (granite) – mafic contacts.

Using the resistivity gradient to map the prospective contacts and magnetics to identify structural intersections along them is a strategy proven to be successful in discovering several nearby, major, geophysically 'invisible' multi-million ounce gold deposits in the same geological terrain, eg The multi-million ounce Granny Smith (Refer – GOLD: Magnetic and Electrical Signatures of the Granny Smith Gold Deposits, Western Australia; John H Coggan, Steven G, Massey & William J.Amann. ASEG Extended Abstracts, 1994:1, 331-340, DOI: 10.1071/AESGSpec07_24).

NEXT STEPS

Yundamindra

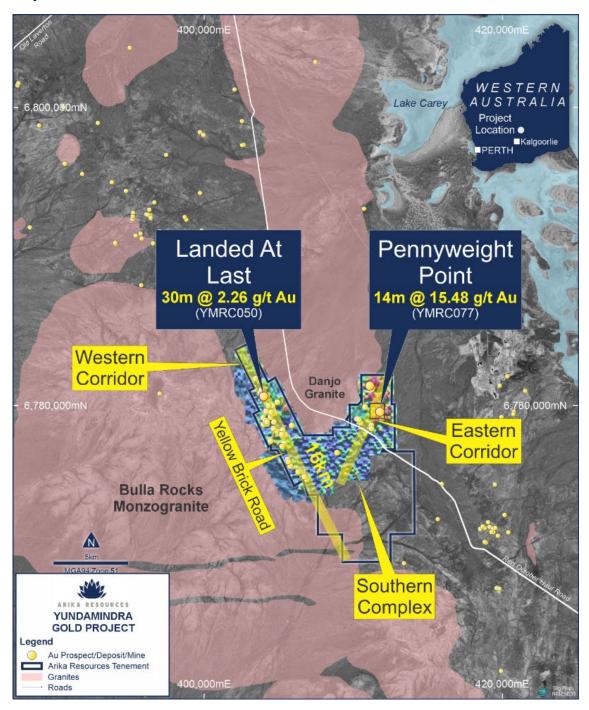
- High impact RC drilling is now in progress at Pennyweight Point combining close spaced ore definition drilling and first pass testing of new targets generated from the recently completed geophysical surveys.
- A large number of results are awaited from wide-spaced sectional drilling along the Yellow Brick Road, Western Corridor and from several target areas located within the Eastern Corridor.
- Core Geophysic's interpretation of data collected from the recent drone-supported aeromagnetic survey over the southern half of the Yundamindra Project area is nearing completion.
- > Targets generated from this work will be fed into the current drilling program.
- > Results will be released continuously once data is received and fully interpreted.

BACKGROUND

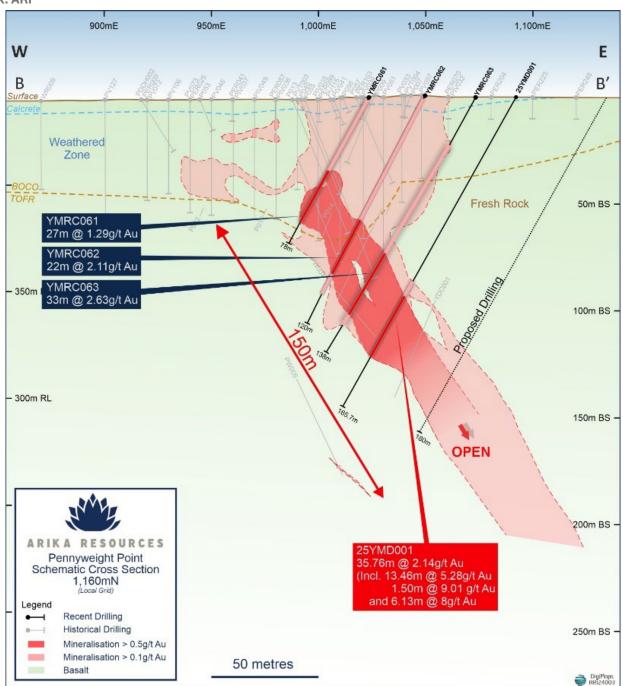
Pennyweight Point

Gold mineralisation in the Yundamindra area was first discovered in 1895 at Pennyweight Point, proximal to the eastern margin of the Danjo Granite Batholith (Figure 4).

Between discovery and the early part of the 20th Century, the area was subjected to extensive surface alluvial/dry blowing activities and small prospector-scale underground mining which exploited near-surface gold-bearing ferruginous quartz veins in deeply weathered clays close to the contact between granite to the west and a broad mafic 'greenstone' sequence to the east.


During the late 1980s – early 1990s several companies, including Sons of Gwalia, Saracen and Mt Burgess, undertook limited shallow drilling centred around the small area of historical workings with the aim of defining an open-pitable oxide resource which could be mined as a satellite operation and trucked to existing processing facilities in Leonora.

Low gold prices at that time (~AU\$350-\$500/oz) deemed the concept uneconomic and those activities ceased.


Arika's recent assessment of Pennyweight Point and the surrounding area is the first modern exploration to be conducted in over 20 years. The Company's strategy is two-fold:

- 1. To grow the scale of the known mineralisation by testing for strike and depth extensions to the zone of previous high grade gold results; and
- 2. To test for 'blind' deposits and discoveries byusing learnings from Pennyweight Point to locate repetitions/additional orebodies beyond the zone of known mineralisation which may occur hidden beneath the extensive blanket of surficial cover which dominates the Eastern Corridor where Pennyweight Point is situated.

Arika's drilling to date at Pennyweight Point has been highly successful in confirming an extensive sub-horizontal zone of near surface supergene gold enrichment and, most importantly, in proving significant thick, high- grade, depth extensions into fresh rock. This zone remains open in all directions and further extensional drilling is planned as part of the current campaign. (Refer to Figures 1 and 5, which present a Vertical Longitudinal Projection and Schematic Cross-Section through diamond drillhole 25YMD001 respectively.

Figure 4: Yundamindra Gold Project showing Arika's tenure and location of the Pennyweight Point and Landed at Last Prospect areas with selected recent significant drill intersections.

Figure 5: Pennyweight Point schematic cross-section B-B' - through diamond drillhole 25YMD001 looking (local) grid north showing a number of previously reported intersections and proposed drilling.

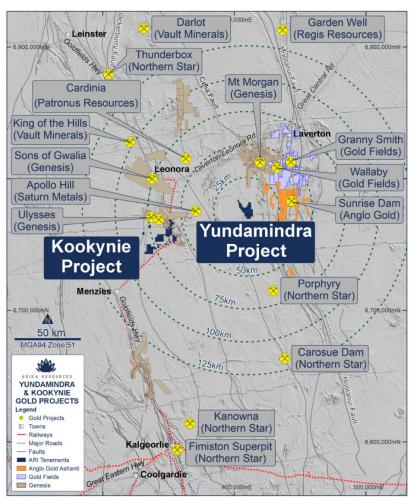
Yundamindra Gold Project

The Yundamindra Gold JV Project is located 65km south-west of Laverton, 250km north of Kalgoorlie, Western Australia (Figure 5). The Project is a Joint Venture between Arika Resources Ltd (ASX: ARI) and Nex Metals (ASX: NME), where Arika holds 80% and NME holds 20% with Arika acting as Project manager.

Regionally, it is situated toward the westernmost margin of the Laverton Greenstone Belt (LGB) in the Yilgarn Craton of Western Australia.

The Laverton Greenstone Belt is one of the best endowed gold regions in Australia. It hosts two world-class producing mines, namely Sunrise Dam at 8 million oz contained Gold and Wallaby at 7 million oz contained

gold (Standing 2008; Austin, 2022)², which are located just ~20-30km east of Arika's Yundamindra Gold Project. Total gold production from the belt is estimated to be in excess of 28 million ounces.


The Laverton Greenstone Belt is one of a number of greenstone belts that collectively define the Kurnalpi tectonostratigraphic terrane of the Northeastern Goldfields 'Superterrane'.

The Kurnalpi Terrane is bounded by the regionally recognisable Hootanui Shear Zone to the east and the Ockerburry Shear Zone to the west – long-lived, deep crustal/mantle penetrating structures which, along with their related second order faults, are considered responsible for the development of many of the region's most significant gold deposits.

At the local scale, the Yundamindra Project covers both the south-western and south-eastern flanks and the southern nose of a regional scale synformal fold comprising a central hornblende-granodiorite batholith which intruded mafic-felsic and lesser sedimentary lithologies (Figures 4 and 6).

This style of structural setting is commonly associated with the development of many of the region's most significant gold deposits. Although the area has had a long history of prospect-scale mining, it has not been subjected to systematic modern exploration and remains under-explored, particularly at depth.

This presents ARI with a unique opportunity to discover significant mineralisation near a number of processing facilities.

Figure 6: Regional Project location Plan showing Arika's Yundamindra & Kookynie Gold Projects in relation to major operating gold mines and deposits over coloured (RTP) & greyscale TMI

² Standing, Jonathon G, Terrane Amalgamation in the Eastern Goldfields Superterrane, Yilgarn Craton: Evidence from tectonostratigraphic studies of the Laverton Greenstone Belt. Precambrian Research, V161, Issues 1-2, 15 February 2008, pages 114-134.. Austin, Joseph Martin, Testing the 'terrane-boundary' concept and geodynamics in the NeoArchean: A cse study of the stratigraphy from the West and East Laverton Greenstone Belts. Queensland University of Technology 2022.

Contributors

Omni GeoX, Core Geophysics, Kinematex, Newexco, Sugden Geoscience Pty Ltd, ERM Technical Mining Services, DigiMaps, Pivot-EXIMS, Industrial Safe, Perenti Group, Karlkurla Pty Ltd

This announcement is approved by the Board of Arika Resources Limited.

ENQUIRIES

Investors
Justin Barton
Managing Director
+61 8 6500 0202
enquiries@arika.com.au

Media Nicholas Read Read Corporate +61 8 9388 1474 info@readcorporate.com.au

Competent Person Statement

The information that relates to Exploration Results is based upon information compiled by Mr Steve Vallance, who is a full-time employee of Arika Resources Ltd in the role of General Manager Exploration and Executive Technical Director. Mr Vallance is a Member of The Australian Institute of Geoscientists (AIG). Mr Vallance has sufficient experience which is relevant to the style of mineralisation and type of deposits under consideration and to the activity which he is undertaking to qualify as a Competent Person as defined in the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves" (the JORC Code 2012). Mr Vallance consents to the inclusion in the report of the matters based on his information in the form and context in which it appears.

Forward Looking Statements

This announcement may contain certain "forward-looking statements" which may not have been based solely on historical facts, but rather may be based on the Company's current expectations about future events and results. Where the Company expresses or implies an expectation or belief as to future events or results, such expectation or belief is expressed in good faith and believed to have reasonable basis. However, forward-looking statements:

(a) are necessarily based upon a number of estimates and assumptions that, while considered reasonable by the

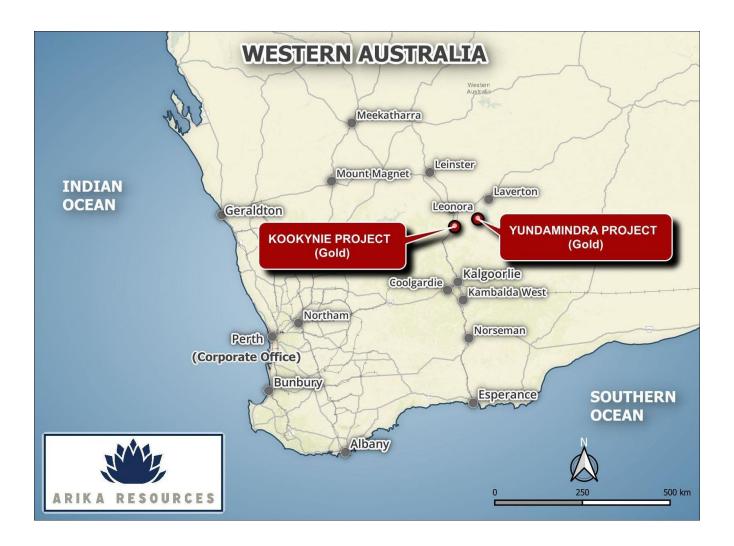
- (a) are necessarily based upon a number of estimates and assumptions that, while considered reasonable by the Company, are inherently subject to significant technical, business, economic, competitive, political and social uncertainties and contingencies;
- (b) involve known and unknown risks and uncertainties that could cause actual events or results to differ materially from estimated or anticipated events or results reflected in such forward-looking statements. Such risks include, without limitation, resource risk, metals price volatility, currency fluctuations, increased production costs and variances in ore grade or recovery rates from those assumed in mining plans, as well as political and operational risks in the countries and states in which the Company operates or supplies or sells product to, and governmental regulation and judicial outcomes; and
- (c) may include, among other things, statements regarding estimates and assumptions in respect of prices, costs, results and capital expenditure, and are or may be based on assumptions and estimates related to future technical, economic, market, political, social and other conditions.

The words "believe", "expect", "anticipate", "indicate", "contemplate", "target", "plan", "intends", "continue", "budget", "estimate", "may", "will", "schedule" and similar expressions identify forward-looking statements.

All forward-looking statements contained in this presentation are qualified by the foregoing cautionary statements. Recipients are cautioned that forward-looking statements are not guarantees of future performance and accordingly recipients are cautioned not to put undue reliance on forward-looking statements due to the inherent uncertainty therein.

The Company disclaims any intent or obligation to publicly update any forward-looking statements, whether as a result of new information, future events or results or otherwise.

No New Information


To the extent that this announcement contains references to prior exploration results which have been cross referenced to previous market announcements made by the Company, unless explicitly stated, no new information is contained. The Company confirms that it is not aware of any new information or data that materially affects the information included in the relevant market announcements and, in the case of estimates of Mineral Resources, that all material assumptions and technical parameters underpinning the estimates in the relevant market announcements continue to apply and have not materially changed.

About Arika Resources Limited

We are focused on delivering value to shareholders through the development and discovery of high-quality gold assets, including the Kookynie and Yundamindra Gold Projects, in Western Australia.

Arika Resources Limited is continuing to build on the potential large scale gold footprints at the Yundamindra and Kookynie Gold Projects by expanding on known mineralisation and targeting new discoveries through a pipeline of high priority brownfield and greenfield targets.

Appendix One - Significant Intercepts and Collars

Significant intercepts in the table below were calculated on a length weighted average basis.

Each RC hole drilled by Arika was sampled in its entirety from start to finish using a combination of 2m or 4m composites and 1m individual samples. For diamond drillholes the diamond cored section of each hole was sampled in its entirety from the start of each cored section to end of hole with sampling guided by geological observations and maximum sample lengths generally not exceeding 1m.

For the low-grade envelope this was based on a 1m sample returning an assay value of greater than 0.1 g/t Au and for the high-grade zone, based on internal intervals reporting assays greater than 0.5 g/t Au, 5.0g/t Au and 10.0 g/t Au respectively. The maximum width of internal waste was generally 4m however the mineralised intervals are based on geological observations and current interpretation. Consequently, in some instances a broader interval of internal waste, interpreted as a 'horse' of limited dip and strike extent may be carried in order to honour the true nature of the ore hosting structure as defined by adjacent drillholes at that location.

No top cut-off was applied due to the early nature of the assessment.

TABLE 1: YUNDAMINDRA EXPLORATION DRILLING RESULTS - PENNYWEIGHT POINT

			Collar Locat	ion and Orie	ntation						Inter	section >0.1	1 g/t Au	•	Comments
Hole_ID	Туре	Local_E	Local_N	MGA_E	MGA_N	RL	Dip	Azimuth	Depth	From	То	Length	G	rade	
									(m)	(m)	(m)	(m)	Au g/t	Au g/t x m	
YMRC088	RC	1039	960	411650	6779419	451	-60	300	58	57	58	1	1.69	1.7	EOH Hangingwall Mineralisaton
YMRC089	RC	1099	960	411709	6779387	446	-60	300	112	68	112	44	0.19	8.4	EOH Hangingwall Mineralisaton
YMRC090	RC	1145	960	411746	6779367	445	-60	300	148	131	139	8	1.36	10.9	Hangingwall Mineralisaton
YMRC097	RC	1050	1041	411703	6779486	450	-60	300	70	47	70	23	0.47	10.8	EOH Hangingwall Mineralisaton
YMRC086	RC	1090	1040	411735	6779467	451	-60	300	112	54	96	42	0.53	22.3	Hangingwall Mineralisaton
YMRC087	RC	1130	1040	411770	6779449	451	-60	300	148	80	100	20	0.55	11.0	EOH Hangingwall Mineralisaton
PV122	RC	899	1060	411576	6779573	439	-90	0	41.0	12	22	10	0.5	5.0	
									incl	12	18	6	0.8	4.8	
P001	RC	1027	1064	411690	6779518	440	-60	73	22.0	0	20	20	0.81	16.2	
PV065	RC	940	1082	411622	6779574	439	-90	0	42.0	30	38	8	0.51	4.1	
PIV013	RC	1042	1099	411720	6779542				incl	32	36	4	0.93	3.7	
PIV011	RC	1000	1098	411682	6779560	440	-90	0	54.0	30	34	4	0.81	3.2	
										36	40	4	0.61	2.4	
										46	54	8	1.04	8.3	
YMRC055	RC	1022	1101	411704	6779553	448	-60	300	78.0	0	1	1	0.18	0.2	
										6	7	1	0.10	0.1	
										9	10	1	0.11	0.1	
										17	20	3	0.23	0.7	

			Collar Locat	ion and Orie	ntation						Inter	section >0.1	L g/t Au		Comments
Hole_ID	Туре	Local_E	Local_N	MGA_E	MGA_N	RL	Dip	Azimuth	Depth	From	То	Length	Gı	rade	
									(m)	(m)	(m)	(m)	Au g/t	Au g/t x m	
										23	44	21	0.29	6.1	
										46	47	1	0.13	0.1	
										50	51	1	0.11	0.1	
										53	55	2	0.37	0.7	
										64	70	6	0.16	1.0	
										75	76	1	0.11	0.1	
YMRC056	RC	1001	1124	411696	6779582	445	-60	300	60.0	0	1	1	0.23	0.2	
										27	38	11	0.54	5.9	
									incl	31	34	3	1.40	4.2	
										41	42	1	0.12	0.1	
YMRC057	RC	1022	1116	411711	6779566	445	-60	300	66.0	0	1	1	0.39	0.4	
										7	61	54	0.38	20.5	
									incl	19	24	5	1.06	5.3	
YMRC096	RC	1040	1120	411732	6779559	451	-60	300	106.0	0	5	5	1.4	7.0	
									incl	1	4	3	2.21	6.6	
									and	3	4	1	5.34	5.3	
										20	79	59	0.41	24.2	
									incl	24	27	3	0.89	2.7	
									and	32	35	3	0.53	1.6	
										58	60	2	2.42	4.8	
										63	64	1	0.71	0.7	
										66	68	2	2.89	5.8	
										74	<i>7</i> 5	1	0.55	0.6	
										86	87	1	0.28	0.3	
										90	98	8	0.16	1.3	
YMRC085	RC	1080	1120	411762	6779546	453	-60	300	124.0	0	2	2	0.19	0.4	
										17	22	5	0.13	0.7	
										44	57	13	0.2	2.6	
									incl	54	55	1	0.73	0.7	

			Collar Locat	ion and Orie	ntation						Inter	section >0.1	L g/t Au		Comments
Hole_ID	Туре	Local_E	Local_N	MGA_E	MGA_N	RL	Dip	Azimuth	Depth	From	То	Length	G	rade	
									(m)	(m)	(m)	(m)	Au g/t	Au g/t x m	
										64	65	1	0.15	0.2	
										81	110	29	1.35	39.2	
									incl	89	100	11	3.15	34.7	
									and	94	97	3	8.13	24.4	
									and	94	95	1	21.6	21.6	
										117	118	1	0.12	0.1	
P043	RC	972	1115	411666	6779588	440	-60	70.36	97.0	27	47	20	0.89	17.8	
PV055	RC	990	1130	411688	6779593	439	-90	0	57.0	0	2	2	1.60	3.2	
										26	46	20	5.67	113.4	
									incl	36	38	2	49.50	99.0	
PV093	RC	1010	1130	411706	6779584	440	-90	0	73.0	16	20	4	1.15	4.6	
									incl	18	19	1	3.35	3.4	
										40	46	6	0.74	4.4	
										61	68	7	1.81	12.7	
									incl	64	66	2	4.41	8.8	
YMRC059	RC	1037	1144	411737	6779583	445	-60	300	84.0	0	12	12	2.13	25.6	
									incl	2	4	2	7.64	15.3	
										16	21	5	0.47	2.4	
										19	20	1	1.10	1.1	
										53	76	23	2.84	65.3	
									incl	55	56	1	14.58	14.6	
									and	64	65	1	11.12	11.1	
									and	71	72	1	5.59	5.6	
PDDH003	DDH003	1055	1125	411743	6779558	440	-60	342	228.3	26	52	26	0.51	13.3	
PIV025	RC	960	1139	411666	6779616	439	-90	0	55.0	42	44	2	3.25	6.5	
YMRC058	RC	1013	1138	411713	6779590	447	-60	300	72.0	0	2	2	0.20	0.4	
										12	13	1	0.21	0.2	
										17	18	1	0.13	0.1	
										21	53	32	0.70	22.4	

			Collar Locat	ion and Orie	ntation						Inter	section >0.1	L g/t Au		Comments
Hole_ID	Туре	Local_E	Local_N	MGA_E	MGA_N	RL	Dip	Azimuth	Depth	From	То	Length	G	rade	
									(m)	(m)	(m)	(m)	Au g/t	Au g/t x m	
									incl	36	42	6	2.42	14.5	
										58	61	3	0.20	0.6	
PIV027	RC	1000	1138	411701	6779596	440	-90	0	68.0	34	60	26	1.04	27.0	
PV111	RC	951	1150	411633	6779629	439	-90	0	51.0	24	38	14	0.61	8.5	
									incl	34	38	4	1.43	5.7	
YMRC059	RC	1037	1144	411737	6779583	445	-60	300	84.0	0	30	30	0.93	27.9	
									incl	0	12	12	1.96	23.5	
									and	3	4	1	9.00	9.0	
										33	36	3	0.17	0.5	
										50	79	29	2.29	66.4	
									incl	53	76	23	2.85	65.6	
									and	53	56	3	7.03	21.1	
										64	65	1	11.12	11.1	
										71	72	1	5.59	5.6	
YMRC060	RC	1056	1143	411753	6779574	444	-60	300	102.0	8	9	1	0.15	0.2	
										24	47	23	0.45	10.4	
									incl	26	34	8	0.80	6.4	
										58	99	41	1.77	72.6	
									incl	67	92	25	2.73	68.3	
									and	67	68	1	15.00	15.0	
										84	86	2	7.85	15.7	
YDC001	RC	1094	1208	411817	6779613	440	-60	253	162.0	71	73	2	1.18	2.4	
										113	114	1	0.76	0.8	
										133	134	1	1.59	1.6	
										149	150	1	0.75	0.8	
PV073	RC	940	1161	411659	6779643	439	-90	0	53.0	28	38	10	1.49	14.9	
									incl	28	30	2	6.25	12.5	
YMRC061	RC	1024	1163	411734	6779606	446	-60	300	78.0	0	2	2	0.24	0.5	
										5	7	2	0.15	0.3	

			Collar Locat	ion and Orie	ntation						Inter	section >0.1	L g/t Au		Comments
Hole_ID	Туре	Local_E	Local_N	MGA_E	MGA_N	RL	Dip	Azimuth	Depth	From	То	Length	G	rade	
									(m)	(m)	(m)	(m)	Au g/t	Au g/t x m	
										13	26	13	0.33	4.3	
									incl	13	15	2	0.90	1.8	
										19	20	1	0.63	0.6	
										40	67	27	1.29	34.8	
									incl	60	67	7	3.61	25.3	
									and	62	67	5	4.52	22.6	
										75	77	2	0.12	0.2	
YMRC062	RC	1050	1162	411757	6779594	445	-60	300	120.0	0	1	1	0.23	0.2	
										12	33	21	0.52	10.9	
									incl	14	20	6	1.29	7.7	
										40	41	1	2.75	2.8	
										55	98	43	1.43	61.5	
									incl	<i>7</i> 3	95	22	2.16	47.5	
									and	63	64	1	5. <i>7</i> 8	5.8	
										86	87	1	7.77	7.8	
										103	105	2	0.20	0.4	
										112	113	1	0.12	0.1	
25YMD001	DDH	1094	1160	411795	6779571	453	-60	300	165.7	104.27	140.03	35.76	2.14	76.5	
									incl	111.40	124.86	13.46	5.28	71.1	
									and	112.55	114.05	1.50	9.01	13.5	
										117.47	123.60	6.13	8.00	49.0	
PV051	RC	1030	1170	411743	6779609	440	-90	0	71.0	14.00	18.00	4.00	2.64	10.6	
PV097	RC	1048	1169	411758	6779600	440	-90	0		14	38	24.00	0.60	14.4	
PV048	RC	950	1170	411672	6779647	439	-90	0	54.0	28	46	18.00	0.61	11.0	
									incl	28	30	2.00	1.67	3.3	
PV049	RC	970	1170	411690	6779638	439	-90	0	56.0	14	18	4.00	0.42	1.7	
										36	40	4.00	0.63	2.5	
PV050	RC	1010	1170	411725	6779619	439	-90	0	72.0	48	72	24	2.67	64.1	
									incl	50	54	4	5.26	21.0	

			Collar Locat	ion and Orie	ntation						Inter	section >0.1	L g/t Au		Comments
Hole_ID	Туре	Local_E	Local_N	MGA_E	MGA_N	RL	Dip	Azimuth	Depth	From	То	Length	G	rade	
									(m)	(m)	(m)	(m)	Au g/t	Au g/t x m	
YMRC067	RC	1024	1177	411740	6779619	446	-60	300	90.0	0	2	2	0.17	0.3	
										18	64	46	0.66	30.4	
									incl	43	63	20	1.32	26.4	
PH001	DDH	979	1139	411683	6779607	439	-60	73.32	99.7	32.5	34.5	2	0.30	0.6	
										50	51	1	2.21	2.2	
										55	61	6	1.87	11.2	
									incl	55.5	56	0.5	11.90	6.0	
										64	66	2	0.40	0.8	
										70	70.5	0.5	0.73	0.4	
										74.2	76.5	2.3	1.38	3.2	
										80.3	99.7	19.4	1.51	29.3	
									incl	84.5	85	0.5	2.55	1.3	
									and	89.5	91	1.5	2.69	4.0	
										94.5	99	4.5	4.02	18.1	
										98.5	99	0.5	11.50	5.8	
YMRC063	RC	1073	1164	411778	6779584	446	-60	300	138.0	0	1	1	0.13	0.1	
										25	29	4	0.19	0.8	
										30	31	1	0.13	0.1	
										34	35	1	0.12	0.1	
										40	62	22	0.56	12.3	
									incl	48	56	8	1.12	9.0	
										66	67	1	0.21	0.2	
										69	70	1	0.19	0.2	
										78	123	45	1.97	88.7	
									incl	85	118	33	2.63	86.8	
									and	96	100	4	7.71	30.8	
										99	100	1	18.89	18.9	
										113	117	4	8.39	33.6	
										116	117	1	19.17	19.2	

			Collar Locat	ion and Orie	ntation						Inter	section >0.1	L g/t Au		Comments
Hole_ID	Туре	Local_E	Local_N	MGA_E	MGA_N	RL	Dip	Azimuth	Depth	From	То	Length	G	rade	
									(m)	(m)	(m)	(m)	Au g/t	Au g/t x m	
										130	131	1	0.14	0.1	
YMRC064	RC	957	1181	411683	6779654	446	-60	300	84.0	35	36	1	0.17	0.2	
										53	56	3	0.10	0.3	
										59	60	1	0.20	0.2	
										69	70	1	0.12	0.1	
PIV038	RC	960	1180	411685	6779651	439	-90	0	52.0	14	22	8	1.69	13.5	
										46	48	2	11.90	23.8	
YMRC065	RC	983	1179	411705	6779640	444	-60	300	90.0	19	30	11	2.14	23.5	
									incl	21	29	8	2.87	23.0	
									and	23	25	2	6.77	13.5	
										23	24	1	9.25	9.3	
										33	34	1	0.18	0.2	
										46	53	7	0.43	3.0	
									incl	50	51	1	1.79	1.8	
										80	83	3	1.48	4.4	
									incl	80	81	1	3.81	3.8	
PIV039	RC	980	1178	411703	6779640	439	-60	300	65.0	44	54	10	0.93	9.3	
YMRC066	RC	1003	1180	411723	6779631	446	-60	300	90.0	21	24	3	0.19	0.6	
										28	29	1	0.11	0.1	
										32	33	1	0.41	0.4	
										35	37	2	0.38	0.8	
										40	41	1	0.33	0.3	
										46	55	9	0.72	6.5	
									incl	48	52	4	1.35	5.4	
YMRC067	RC	1024	1177	411740	6779619	446	-60	300	90.0	18	64	46	0.66	30.4	
									incl	43	63	20	1.32	26.4	
YMRC068	RC	1048	1180	411763	6779610	447	-60	300	120.0	0	33	33	0.50	16.5	
									incl	0	7	7	1.00	7.0	
										12	15	3	0.72	2.2	

			Collar Locat	ion and Orie	ntation						Inter	section >0.1	L g/t Au		Comments
Hole_ID	Туре	Local_E	Local_N	MGA_E	MGA_N	RL	Dip	Azimuth	Depth	From	То	Length		rade	
									(m)	(m)	(m)	(m)	Au g/t	Au g/t x m	
										23	24	1	0.86	0.9	
										29	32	3	0.58	1.7	
										45	52	7	0.53	3.7	
									incl	46	51	5	0.65	3.3	
										63	102	39	0.60	23.4	
									incl	67	<i>7</i> 5	8	1.01	8.1	
									and	<i>7</i> 9	82	3	1.18	3.5	
										87	90	3	1.36	4.1	
										98	102	4	0.85	3.4	
										115	116	1	0.89	0.9	
PDDH003	DDH	1055	1125	411743	6779558	440	-60	343	228.3	26	52	26	0.51	13.3	
									incl	28	30	2	1.61	3.2	
										67.3	68.3	1	0.50	0.5	
										75.3	76.3	1	0.51	0.5	
										80.3	121.3	41	1.89	77.5	
									incl	80.3	82.3	2	4.00	8.0	
									and	88.3	90.3	2	3.10	6.2	
										100.3	107.3	7	5.59	39.1	
										103.3	105.3	2	12.00	24.0	
										113.3	119.3	6	2.20	13.2	
										151.3	152.3	1	1.08	1.1	
YMRC069	RC	1070	1180	411783	6779600	447	-60	300	138.0	0	1	1	0.23	0.2	
										12	13	1	0.10	0.1	
										28	32	4	0.16	0.6	
										39	40	1	0.55	0.6	
										45	54	9	0.26	2.3	
									incl	52	53	1	1.23	1.2	
										64	69	5	0.37	1.9	
									incl	64	65	1	1.00	1.0	

			Collar Locat	ion and Orie	ntation						Inter	section >0.1	L g/t Au		Comments
Hole_ID	Туре	Local_E	Local_N	MGA_E	MGA_N	RL	Dip	Azimuth	Depth	From	То	Length	G	rade	
									(m)	(m)	(m)	(m)	Au g/t	Au g/t x m	
										76	77	1	0.35	0.4	
										82	124	42	2.83	118.9	
									incl	89	119	30	3.87	116.1	
									and	100	115	15	5.01	<i>7</i> 5.2	
										106	108	2	20.26	40.5	
										95	96	1	6.98	7.0	
YMRC070	RC	1094	1183	411805	6779591	446	-60	300	138.0	24	25	1	0.17	0.2	
										46	47	1	0.12	0.1	
										54	56	2	0.15	0.3	
										61	73	12	0.14	1.7	
										76	77	1	0.24	0.2	
										81	82	1	0.19	0.2	
										86	95	9	0.23	2.1	
									incl	87	89	2	0.69	1.4	
										102	113	11	0.59	6.5	
									incl	105	108	3	1.28	3.8	
										119	138	19	1.13	21.5	
									incl	121	126	5	3.39	17.0	
									and	123	125	2	7.20	14.4	
										130	132	2	1.42	2.8	
YDC002	RC	1129	1242	411864	6779627	440	-60	253	198.0	148	149	1	0.66	0.7	
										154	155	1	0.63	0.6	
										173	195	22	0.97	21.3	
									incl	173	<i>17</i> 8	5	2.00	10.0	
									and	187	188	1	2.77	2.8	
										192	193	1	2.59	2.6	
PV105	RC	930	1190	411664	6779674	438	-90	0	69.0	46	62	16	5.51	88.2	
									incl	46	48	2	37.00	74.0	
PV046	RC	950	1190	411682	6779665	438	-90	0	57.0	18	22	4	1.49	6.0	

			Collar Locat	ion and Orie	ntation						Inter	section >0.1	L g/t Au		Comments
Hole_ID	Туре	Local_E	Local_N	MGA_E	MGA_N	RL	Dip	Azimuth	Depth	From	То	Length	G	rade	
									(m)	(m)	(m)	(m)	Au g/t	Au g/t x m	
										44	46	2	0.62	1.2	
PV094	RC	970	1190	411699	6779655	439	-90	0	52.0	34	36	2	2.36	4.7	
										49	52	3	3.32	10.0	
PV047	RC	990	1190	411717	6779647	439	-90	0	68.0	42	68	26	0.43	11.2	
									incl	42	44	2	2.04	4.1	
PDDH004	DDH	1072	1242	411814	6779654	440	-60	270	204.5	113.2	145.6	32.4	2.63	85.2	
									incl	118.18	124.13	5.95	9.34	55.6	
									and	128.13	133.78	5.65	3.42	19.3	
										142.7	145.6	2.9	1.54	4.5	
PIV049	RC	961	1196	411693	6779665	439	-90	0	62.0	14	44	30	3.64	109.2	
									incl	16	18	2	4.92	9.8	
									and	22	24	2	21.20	42.4	
										30	32	2	7.90	15.8	
PV052	RC	1050	1150	411751	6779583	440	-90	0	45.0	44	45	1	0.95	1.0	
YMRC071	RC	983	1202	411716	6779660	444	-60	300	90.0	22	55	33	3.35	110.6	
									incl	33	54	21	5.14	107.9	
									and	34	40	6	13.14	78.8	
										36	40	4	16.16	64.6	
										43	44	1	7.25	7.3	
										64	65	1	0.10	0.1	
										78	79	1	0.56	0.6	
YMRC072	RC	1003	1204	411734	6779652	445	-60	300	84.0	46	62	16	1.27	20.3	
									incl	52	62	10	1.94	19.4	
									and	53	54	1	8.97	9.0	
PVT006	RAB	970	1201	411704	6779665	438	-90	0	56.0	34	50	16	2.01	32.2	
									incl	36	38	2	7.36	14.7	
PIV048	RC	979	1198	411711	6779658	439	-90	0	69.0	48	69	21	2.11	44.3	
									incl	48	52	4	3.33	13.3	
									and	60	62	2	12.80	25.6	

			Collar Locat	ion and Orie	ntation						Inter	section >0.1	L g/t Au		Comments
Hole_ID	Туре	Local_E	Local_N	MGA_E	MGA_N	RL	Dip	Azimuth	Depth	From	То	Length	G	rade	
									(m)	(m)	(m)	(m)	Au g/t	Au g/t x m	
YMRC073	RC	1025	1202	411753	6779641	445	-60	300	90.0	37	42	5	0.25	1.3	
									incl	40	41	1	0.72	0.7	
										58	79	21	0.35	7.4	
									incl	67	71	4	1.12	4.5	
										86	87	1	1.73	1.7	
YMRC074	RC	1047	1202	411773	6779630	446	-60	300	120.0	8	54	46	0.52	23.9	
									incl	38	50	12	1.64	19.7	
									and	44	45	1	6.09	6.1	
										59	61	2	0.20	0.4	
										64	66	2	0.35	0.7	
										70	71	1	0.14	0.1	
										73	109	36	2.01	72.4	
									incl	81	103	22	3.21	70.6	
									and	85	87	2	5.50	11.0	
										91	98	7	6.51	45.6	
										96	97	1	25.93	25.9	
YMRC075	RC	1073	1201	411795	6779617	445	-60	300	138.0	0	7	7	0.10	0.7	
										11	12	1	0.17	0.2	
										24	43	19	0.23	4.4	
									incl	26	27	1	0.78	0.8	
										58	60	2	0.13	0.3	
										76	83	7	0.20	1.4	
										93	94	1	0.22	0.2	
										100	135	35	1.46	51.1	
									incl	109	126	17	2.67	45.4	
									and	120	121	1	19. <i>7</i> 5	19.8	
										137	138	1	0.16	0.2	
25YMD002	DDH	1133	1198	411847	6779586	453	-60	300	210.7	162.03	186.00	23.97	2.54	60.9	
									incl	170.52	175.90	5.38	10.62	57.1	

			Collar Locat	tion and Orie							Inter	section >0.1	l g/t Au		Comments
Hole_ID	Туре	Local_E	Local_N	MGA_E	MGA_N	RL	Dip	Azimuth	Depth	From	То	Length	G	rade	
									(m)	(m)	(m)	(m)	Au g/t	Au g/t x m	
									and	171.56	175.90	4.34	13.05	56.6	
P052	RC			411658	6779687	438	-60	73		0	20	20	0.52	10.4	
PV095	RC	950	1210	411691	6779683	438	-90	0	59.0	44	54	10	45.28	452.8	
									incl	44	46	2	183.00	366.0	
PV043	RC	970	1209	411708	6779673	439	-90	0	66.0	40	62	22	3.00	66.0	
									incl	42	44	2	4.84	9.7	
									and	48	56	8	5.34	42.7	
										48	50	2	11.70	23.4	
YMRC077	RC	1000	1222	411741	6779669	443	-60	300	84.0	0	1	1	0.11	0.1	
										46	60	14	15.48	216.7	
									incl	48	57	9	23.98	215.8	
									and	51	53	2	101.50	203.0	
										66	68	2	0.17	0.3	
										71	73	2	0.15	0.3	
YMRC076	RC	980	1222	411723	6779679	444	-60	300	84.0	34	35	1	0.24	0.2	
										44	54	10	0.83	8.3	
									incl	49	51	2	3.35	6.7	
									and	49	50	1	5.88	5.9	
										62	70	8	0.55	4.4	
									incl	63	64	1	0.84	0.8	
									and	67	68	1	2.75	2.8	
YMRC078	RC	1030	1220	411767	6779651	441	-60	300	106.0	0	15	15	0.20	3.0	
										25	29	4	0.31	1.2	
									incl	25	27	2	0.65	1.3	
										53	54	1	0.23	0.2	
										63	64	1	0.32	0.3	
										74	75	1	0.2	0.2	
										78	80	2	0.13	0.3	
										90	100	10	0.44	4.4	

Collar Location and Orientation								Intersection >0.1 g/t Au				Comments			
Hole_ID	Туре	Local_E	Local_N	MGA_E	MGA_N	RL	Dip	Azimuth	Depth	From	То	Length	G	rade	
									(m)	(m)	(m)	(m)	Au g/t	Au g/t x m	
									incl	91	92	1	3.26	3.3	
YMRC079	RC	1070	1220	411802	6779633	452	-60	300	148.0	21	23	2	0.1	0.2	
										29	42	13	0.31	4.0	
									incl	36	37	1	0.69	0.7	
										45	46	1	0.1	0.1	
										57	58	1	0.1	0.1	
										87	93	6	0.26	1.6	
									incl	90	91	1	0.58	0.6	
										106	135	29	0.23	6.7	
									incl	109	110	1	1.12	1.1	
										126	127	1	0.57	0.6	
										130	131	1	0.71	0.7	
YMRC084	RC	1110	1221	411834	6779616	447	-60	300	178.0	28	30	2	0.14	0.3	
										47	50	3	0.12	0.4	
										60	62	2	0.29	0.6	
										67	80	13	0.26	3.4	
									incl	<i>7</i> 3	74	1	1.65	1.7	
										100	102	2	0.13	0.3	
										108	110	2	0.36	0.7	
										118	129	11	0.22	2.4	
									incl	127	128	1	0.73	0.7	
										140	149	9	0.23	2.1	
									incl	147	148	1	1.04	1.0	
PV045	RC	950	1229	411700	6779700	438	-90	0	64.0	36	64	28	1.40	39.2	
									incl	62	64	2	6.35	12.7	
PV075	RC	940	1241	411696	6779715	438	-90	0	62.0	42	46	4	1.38	5.5	
PV099	RC	921	1260	411688	6779740	438	-90	0	66.0	28	40	12	0.96	11.5	
										60	62	2	2.22	4.4	
YMRC091	RC	1030	1300	411803	6779722	445	-60	300	104	32	45	13	0.32	4.2	Hangingwall Mineralisation

	Collar Location and Orientation							Intersection >0.1 g/t Au				Comments			
Hole_ID	Туре	Local_E	Local_N	MGA_E	MGA_N	RL	Dip	Azimuth	Depth	From	То	Length	G	rade	
									(m)	(m)	(m)	(m)	Au g/t	Au g/t x m	
										58	67	9	0.14	1.3	Hangingwall Mineralisation
YMRC092	RC	1070	1300	411838	6779703	444	-60	300	142	38	42	4	0.38	1.5	Hangingwall Mineralisation
										52	65	13	0.14	1.8	Hangingwall Mineralisation
PV155	RC	1071	1332	411854	6779734	437	-90	0	60.0	22	26	4	1.65	6.6	Hangingwall Mineralisation
YMRC095	RC	1025	1350	411822	6779771	450	-60	300	82	76	78	2	0.45	0.9	Hangingwall Mineralisation

Appendix 2: JORC Code, 2012 Edition - Table 1

Section 1: Sampling Techniques and Data

Section 1: Sampling Te Criteria	JORC Code explanation	Commentary
	•	-
Sampling techniques	 Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information. 	 This announcement presents the results of three Diploe-Dipole Induced Polarisation (IP) Surveys undertaken over selected areas utilising industry standard survey specifications and equipment at Arika's (ARI's) Pennyweight Point Prospect area, Yundamindra Gold Project, Laverton Region WA. The announcement also presents the results of previously reported ultra-detailed drone supported airborne magnetics and ground gravity surveys undertaken utilising industry standard survey specifications and equipment over Arika's (ARI's) Pennyweight Point prospect area, Yundamindra Gold Project, Laverton Region WA. The IP survey was undertaken by Perth based specialist geophysical contracting group, Kinematex Pty Ltd, under the guidance of Perth based Geophysical Consulting group, Core Geophysics. Two (2) traverses were carried out using 50m station spaced Dipole-Dipole "DD-IP" (n=8) and one (1) traverse of 100m spaced stations (n=2) for a total of 66 stations and 4,150 line/m. The final data was reviewed and interpreted by the Company's Consulting Geophysicist, Andrew Bisset, Core Geophysics.
Drilling techniques	 Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face- sampling bit or other type, whether core is oriented and 	 No drilling or sampling was undertaken. Historical drilling, and Arika's more recent drilling, includes results generated from Rotary Air Blast (RAB), Reverse Circulation (RC) and Diamond Core Drilling (DDH). Specific details relating to these techniques have been presented in previous ASX releases.

	if so, by what method, etc).	
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	Not applicable – no drilling or sampling was undertaken.
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. 	Not applicable – no drilling or sampling was undertaken.
Sub-sampling techniques and sample preparation	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. 	Not applicable – no drilling or sampling was undertaken.

	Whether sample sizes are appropriate to the grain size of the material being sampled.	
Quality of assay data and laboratory tests	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established. 	 Specifications for each of the surveys undertaken are included in tables within the body of the report. Survey equipment included: GDD TX4 Transmitter (2,400v/20A/5,000w) SmartEM 24 16 Channel Receiver Non-Polarising Porous Pot – CuSO₄ Electrodes DDIP Survey Specifications: Receiver Dipole & Station Spacing: 2 x 50m (in-line 2D) n=8 and 1 x 100m (in-line 2D) n=2 Transmitter Frequency: 0.125Hz (2 second on – 2 second off time base) Stacking Time: 16 stacks/120 seconds (3 readings)
Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	 Not applicable – no drilling, assaying or sampling was undertaken. To the best of ARI's knowledge, industry standard practices were employed for each of the surveys used in the interpretation described in this release.
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	 Not applicable – no drilling was undertaken; no mine workings were surveyed. To the best of ARI's knowledge, industry standard practices were employed for each of the surveys used in the interpretation described in this release. The data is not being used for Mineral Resource estimation. Core Geophysics presented all final data sets based on GDA94 Datum projected to MGA Zone 51.

		 Accuracy is sub 1 meter. Topographic control provided by the Digital Terrain Models generated from these surveys is considered adequate for the phase of work currently being undertaken.
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	 Data spacing is defined as detailed. DDIP Survey Specifications: Receiver Dipole & Station Spacing: 2 x 50m (in-line 2D) n=8 and 1 x 100m (inline 2D) n=2 The surveys provide for high resolution imagery. The spacing is considered industry standard for exploration of orogenic gold in the NE Goldfields, Yilgarn WA. The data is not being used for Mineral resource estimation. No sample compositing has been applied.
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	 The geophysical surveys referred to in this release were designed to transect the major lithological and structural trends orthogonal to strike. In some instances, these may be subparallel to previously unknown structural trends and in those instances potentially ineffective. No drilling was undertaken as a part of this announcement. The concept of bias is not applicable.
Sample security	The measures taken to ensure sample security.	To the best of ARI's knowledge, industry standard security practices were employed for each of the surveys used in the interpretation described in this release.
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	ARI has not undertaken any other audits or reviews of the data.

Section 2: Reporting of Exploration Results

Section 2. Neporting o	1 Exploration nesults	
Criteria	JORC Code explanation	Commentary
Mineral tenement	Type, reference	The Yundamindra Project comprises:
and land tenure	name/number, location and	• 9 granted Mining Leases: M39/406-410;
status	ownership including	M39/84; M39/274; M39/839-840
	agreements or material issues	• 2 granted Exploration Licences: E39/1773-
	with third parties such as joint	1774.
	ventures, partnerships,	• 2 granted Prospecting Licences: P39/6126-

int wi ar • Th at wi to	verriding royalties, native title terests, historical sites, ilderness or national park and environmental settings. The security of the tenure held the time of reporting along ith any known impediments to obtaining a licence to perate in the area.	•	3 Miscellaneous Licences: L39/52; L39/34; L39/258 The project area has been the subject of several previous and extensive Indigienous Heritage Surveys. Arika completed an extensive heritage survey over the entirety of the Yundamindra Project area during June 2025. There are 6 registered Indigenous Heritage Areas within the project area which will be managed in accordance with all regulatory requirements and procedures. Arika operates within a Joint Venture Agreement with Nex Metals Exploration (NME) and holds 80% with NME holding the remaining 20%. Please refer to announcement "Metalicity Achieves Earn-In on the Kookynie & Yundamindra Gold Projects" dated 21st December 2023. No impediments exist to obtaining a license to operate over the listed tenure at the time of reporting.
by other parties ap	cknowledgment and oppraisal of exploration by ther parties.		Arika Ltd has completed a review of historical data and made corrections to previously supplied data from the JV partner NME. The Yundamindra areas has been subject to multiple phases of exploration since discovery of gold in 1895. Further small-scale mining occurred until the 1940's. Exploration activities between the late 1970's into the early 1980's was completed by Pennzoil Australia, Kennecott Exploration with Hill Minerals, and Picon Exploration. From 1985 to 1994 Mt Burgess Gold Mining Company undertook significant exploration drilling to generate resource estimates for the western and eastern lines of mineralisation in 1988 and 1989 respectively. Sons of Gwalia entered into a JV with Mt Burgess in the mid 1990's which lasted until 1999 then held the project tenements outright until 2003. Activities during this period included an optimisation study in 1997 on part of the Western Line of mineralisation as well as further resource estimates. Saracen Gold held the project tenements from 2006 until 2010 until it entered a JV with NME. NME controlled the project outright from

Geology	Deposit type, geological setting and style of mineralisation.	 2013 until entering into a JV with Arika (formerly Metalicity) in 2019 at which point Arika took over responsibility as project manager. Relevant WAMEX Reports utilised in this review include, but are not limited to: Sons of Gwalia A61115 and A62783 NEX Metals: A101720; A85913; A112130 Strata: A63118; A67629 Yundamindra: The Yundamindra Project lies within the Murrin-Margaret sector of the Leonora-Laverton area; part of the north-northwest to south-southeast trending Norseman-Wiluna Greenstone Belt of the Eastern Goldfields Province of the Yilgarn Craton.
		 The Murrin-Margaret sector is dominated by an upright, north to north-northwest trending asymmetric regional anticline (Eucalyptus Anticline) centred about the Eucalyptus area. The western limb of the regional anticline has been intruded by granitoids (Yundamindra area). Strike-slip faulting is dominant along the eastern limb. The Yundamindra Project encompasses zones of gold mineralisation occurring along the margin of a regional scale hornblende-granodiorite batholith which intruded mafic lithologies. The contact
		is sub-divided into two 'lines' of mineralisation, western and eastern. The Western Line consists of a north-northwest trending zone of generally continuous, east dipping quartz reefs and quartz filled shears in granitoids, near the contact between a large hornblende granodiorite pluton and a thin remnant greenstone succession. The lode generally strikes parallel to a regional north-northwest schistosity in the mafic succession immediately to the west. Folding and faulting has dislocated the continuity of the lode in places and produced domal structures.
		The Eastern Line encompasses the eastern portion of the arcuate granodiorite/greenstone contact with gold mineralisation associated with quartz veining within the mafic succession and within quartz vein/stockwork within granodiorite.

		All exploration targets, prospects and deposits are interpreted as orogenic shear-hosted exploration targets for gold mineralisation.
Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. 	 Not applicable – no drilling or sampling was completed as a part of this release. Any drillholes shown on accompanying plans are referenced to the relevant previous ASX releases.
Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. 	 Not applicable – no assaying or sampling. No weight averaging, grade truncations, aggregation methods or metal equivalents were applied.
Relationship between mineralisation	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the 	All drilling undertaken by Arika and presented within this report has been designed to intersect the targeted horizons orthogonal to strike. Consequently, intersection lengths as reported

widths and intercept lengths	mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known').	approximate true widths. All historical intercepts are presented as downhole lengths and for these holes true widths are unknown.
Diagrams	Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	All relevant figures are referred to and included in their appropriate positions within the report.
Balanced reporting	Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	All information has been presented in a form that allows for the reasonable understanding and evaluation of the exploration activities and exploration results being announced.
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	 The area has had significant historical production recorded and is accessible via the MINEDEX database. All material results from geochemical, geophysical, geological mapping and drilling activities related to prospects across the Yundamindra Gold Project have been disclosed. Surface geochemistry is presented as percentile dot thematic maps plotted over GSWA 1:250K surface geology to visually assess what geological or regolith controls might impact on the surface chemistry responses. Elements with acceptable quality and good spatial coverage were levelled using the Z-score levelling method and Lev_Geol_Code as a levelling category. The levelling process was effective in highlighting responses in the central-south of the area while tightening up and preserving responses for previously identified anomalous areas.
Further work	The nature and scale of planned further work (eg tests for lateral extensions or depth	Follow up exploration activities will include, but not be limited to, field evaluation of all Geophysical Target Areas:

- extensions or large-scale step-out drilling).
- Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive.
- o Mapping
- o Rock chip sampling
- Surface soil and/or stream sediment sampling
- Additional ultra-detailed aeromagnetics surveys
- Electrical geophysical surveys including Induced Polarisation (IP)
- Follow-up litho-geochemical Aircore/RC and diamond cored drilling is planned for the remainder of 2025.
- Diagrams pertinent to the areas in question are supplied in the body of this announcement.